GSTDTAP  > 气候变化
DOI10.1111/gcb.15203
Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks
Gianluca Tramontana; Mirco Migliavacca; Martin Jung; Markus Reichstein; Trevor F. Keenan; Gustau Camps‐; Valls; Jerome Ogee; Jochem Verrelst; Dario Papale
2020-07-02
发表期刊Global Change Biology
出版年2020
英文摘要

The eddy covariance (EC) technique is used to measure the net ecosystem exchange (NEE) of CO2 between ecosystems and the atmosphere, offering a unique opportunity to study ecosystem responses to climate change. NEE is the difference between the total CO2 release due to all respiration processes (RECO), and the gross carbon uptake by photosynthesis (GPP). These two gross CO2 fluxes are derived from EC measurements by applying partitioning methods that rely on physiologically based functional relationships with a limited number of environmental drivers. However, the partitioning methods applied in the global FLUXNET network of EC observations do not account for the multiple co‐acting factors that modulate GPP and RECO flux dynamics. To overcome this limitation, we developed a hybrid data‐driven approach based on combined neural networks (NNC‐part). NNC‐part incorporates process knowledge by introducing a photosynthetic response based on the light‐use efficiency (LUE) concept, and uses a comprehensive dataset of soil and micrometeorological variables as fluxes drivers. We applied the method to 36 sites from the FLUXNET2015 dataset and found a high consistency in the results with those derived from other standard partitioning methods for both GPP (R 2 > .94) and RECO (R 2 > .8). High consistency was also found for (a) the diurnal and seasonal patterns of fluxes and (b) the ecosystem functional responses. NNC‐part performed more realistic than the traditional methods for predicting additional patterns of gross CO2 fluxes, such as: (a) the GPP response to VPD, (b) direct effects of air temperature on GPP dynamics, (c) hysteresis in the diel cycle of gross CO2 fluxes, (d) the sensitivity of LUE to the diffuse to direct radiation ratio, and (e) the post rain respiration pulse after a long dry period. In conclusion, NNC‐part is a valid data‐driven approach to provide GPP and RECO estimates and complementary to the existing partitioning methods.

领域气候变化 ; 资源环境
URL查看原文
引用统计
被引频次:44[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/281733
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Gianluca Tramontana,Mirco Migliavacca,Martin Jung,et al. Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks[J]. Global Change Biology,2020.
APA Gianluca Tramontana.,Mirco Migliavacca.,Martin Jung.,Markus Reichstein.,Trevor F. Keenan.,...&Dario Papale.(2020).Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks.Global Change Biology.
MLA Gianluca Tramontana,et al."Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks".Global Change Biology (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gianluca Tramontana]的文章
[Mirco Migliavacca]的文章
[Martin Jung]的文章
百度学术
百度学术中相似的文章
[Gianluca Tramontana]的文章
[Mirco Migliavacca]的文章
[Martin Jung]的文章
必应学术
必应学术中相似的文章
[Gianluca Tramontana]的文章
[Mirco Migliavacca]的文章
[Martin Jung]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。