GSTDTAP  > 地球科学
DOI10.1038/s41586-019-1901-0
Classification with a disordered dopantatom network in silicon
Vagnozzi, Ronald J.1; Maillet, Marjorie1; Sargent, Michelle A.1; Khalil, Hadi1; Johansen, Anne Katrine Z.1; Schwanekamp, Jennifer A.2; York, Allen J.1; Huang, Vincent1; Nahrendorf, Matthias3; Sadayappan, Sakthivel2; Molkentin, Jeffery D.1,4
2020-01-16
发表期刊NATURE
ISSN0028-0836
EISSN1476-4687
出版年2020
卷号577期号:7790页码:341-+
文章类型Article
语种英语
国家Netherlands
英文关键词

Classification is an important task at which both biological and artificial neural networks excel(1,2). In machine learning, nonlinear projection into a high-dimensional feature space can make data linearly separable(3,4), simplifying the classification of complex features. Such nonlinear projections are computationally expensive in conventional computers. A promising approach is to exploit physical materials systems that perform this nonlinear projection intrinsically, because of their high computational density(5), inherent parallelism and energy efficiency(6,7). However, existing approaches either rely on the systems' time dynamics, which requires sequential data processing and therefore hinders parallel computation(5,6,8), or employ large materials systems that are difficult to scale up(7). Here we use a parallel, nanoscale approach inspired by filters in the brain(1) and artificial neural networks(2) to perform nonlinear classification and feature extraction. We exploit the nonlinearity of hopping conduction(9-11) through an electrically tunable network of boron dopant atoms in silicon, reconfiguring the network through artificial evolution to realize different computational functions. We first solve the canonical two-input binary classification problem, realizing all Boolean logic gates(12) up to room temperature, demonstrating nonlinear classification with the nanomaterial system. We then evolve our dopant network to realize feature filters(2) that can perform four-input binary classification on the Modified National Institute of Standards and Technology handwritten digit database. Implementation of our material-based filters substantially improves the classification accuracy over that of a linear classifier directly applied to the original data(13). Our results establish a paradigm of silicon-based electronics for smallfootprint and energy-efficient computation(14).


领域地球科学 ; 气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000509570100027
WOS关键词ACCELERATOR ; EVOLUTION
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/281244
专题地球科学
资源环境科学
气候变化
作者单位1.Univ Cincinnati, Dept Pediat, Cincinnati Childrens Hosp Med Ctr, Cincinnati, OH 45221 USA;
2.Univ Cincinnati, Dept Internal Med, Heart Lung & Vasc Inst, Cincinnati, OH USA;
3.Harvard Med Sch, Massachusetts Gen Hosp, Cardiovasc Res Ctr, Ctr Syst Biol,Dept Imaging, Boston, MA 02115 USA;
4.Cincinnati Childrens Hosp Med Ctr, Howard Hughes Med Inst, Cincinnati, OH 45229 USA
推荐引用方式
GB/T 7714
Vagnozzi, Ronald J.,Maillet, Marjorie,Sargent, Michelle A.,et al. Classification with a disordered dopantatom network in silicon[J]. NATURE,2020,577(7790):341-+.
APA Vagnozzi, Ronald J..,Maillet, Marjorie.,Sargent, Michelle A..,Khalil, Hadi.,Johansen, Anne Katrine Z..,...&Molkentin, Jeffery D..(2020).Classification with a disordered dopantatom network in silicon.NATURE,577(7790),341-+.
MLA Vagnozzi, Ronald J.,et al."Classification with a disordered dopantatom network in silicon".NATURE 577.7790(2020):341-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Vagnozzi, Ronald J.]的文章
[Maillet, Marjorie]的文章
[Sargent, Michelle A.]的文章
百度学术
百度学术中相似的文章
[Vagnozzi, Ronald J.]的文章
[Maillet, Marjorie]的文章
[Sargent, Michelle A.]的文章
必应学术
必应学术中相似的文章
[Vagnozzi, Ronald J.]的文章
[Maillet, Marjorie]的文章
[Sargent, Michelle A.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。