GSTDTAP  > 资源环境科学
DOI10.1029/2019WR026052
Boosting Resolution and Recovering Texture of 2D and 3D Micro-CT Images with Deep Learning
Da Wang, Ying; Armstrong, Ryan T.; Mostaghimi, Peyman
2020
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2020
卷号56期号:1
文章类型Article
语种英语
国家Australia
英文摘要

Simulation of flow directly at the pore scale depends on high-quality digital rock images but is constrained by detector hardware. A trade-off between the image field of view (FOV) and image resolution is made. This can be compensated for with superresolution (SR) techniques that take a wide FOV, low-resolution (LR) image, and superresolve a high resolution (HR). The Enhanced Deep Super Resolution Generative Adversarial Network (EDSRGAN) is trained on the DeepRock-SR, a diverse compilation of raw and processed micro-computed tomography (mu CT) images in 2D and 3D. The 2D and 3D trained networks show comparable performance of 50% to 70% reduction in relative error over bicubic interpolation with minimal computational cost during usage. Texture regeneration with EDSRGAN shows superior visual similarity versus Super Resolution Convolutional Neural Network (SRCNN) and other methods. Difference maps show SRCNN recovers large-scale edge features while EDSRGAN regenerates perceptually indistinguishable high-frequency texture. Physical accuracy is measured by permeability and phase topology on consistently segmented images, showing EDSRGAN results achieving the closest match. Performance is generalized with augmentation, showing high adaptability to noise and blur. HR images are fed into the network, generating HR-SR images to extrapolate network performance to subresolution features present in the HR images themselves. Underresolution features are regenerated despite operating outside of trained specifications. Comparison with scanning electron microscopy (SEM) images shows details are consistent with the underlying geometry. Images that are normally constrained by the mineralogy of the rock, by fast transient imaging, or by the energy of the source can be superresolved accurately for further analysis.


Plain Language Summary When capturing an X-ray image of the insides of a rock sample (or any opaque object), hardware limitations on the image quality and size exist. These limitations can be overcome with the use of machine learning algorithms that "superresolve" a lower resolution image. Once trained, the machine algorithm can sharpen otherwise blurry features and regenerate the underlying texture of the imaged object. We train such an algorithm on a large and wide array of digital rock images and test its flexibility on some images that it had never seen before, as well as on some very high quality images that it was not trained to superresolve. The results of training and testing the algorithm shows a promising degree of accuracy and flexibility in handling a wide array of images of different quality and allows for higher quality images to be generated for use in other image-based analysis techniques.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000520132500021
WOS关键词LEVEL COOCCURRENCE MATRIX ; X-RAY MICROTOMOGRAPHY ; COMPUTED-TOMOGRAPHY ; SUPERRESOLUTION ; CLASSIFICATION ; ALGORITHM ; DRAINAGE ; MEDIA
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/280459
专题资源环境科学
作者单位Univ New South Wales, Sch Minerals & Energy Resources Engn, Sydney, NSW 2052, Australia
推荐引用方式
GB/T 7714
Da Wang, Ying,Armstrong, Ryan T.,Mostaghimi, Peyman. Boosting Resolution and Recovering Texture of 2D and 3D Micro-CT Images with Deep Learning[J]. WATER RESOURCES RESEARCH,2020,56(1).
APA Da Wang, Ying,Armstrong, Ryan T.,&Mostaghimi, Peyman.(2020).Boosting Resolution and Recovering Texture of 2D and 3D Micro-CT Images with Deep Learning.WATER RESOURCES RESEARCH,56(1).
MLA Da Wang, Ying,et al."Boosting Resolution and Recovering Texture of 2D and 3D Micro-CT Images with Deep Learning".WATER RESOURCES RESEARCH 56.1(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Da Wang, Ying]的文章
[Armstrong, Ryan T.]的文章
[Mostaghimi, Peyman]的文章
百度学术
百度学术中相似的文章
[Da Wang, Ying]的文章
[Armstrong, Ryan T.]的文章
[Mostaghimi, Peyman]的文章
必应学术
必应学术中相似的文章
[Da Wang, Ying]的文章
[Armstrong, Ryan T.]的文章
[Mostaghimi, Peyman]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。