GSTDTAP  > 气候变化
DOI10.1029/2019GL086426
Constraining Reanalysis Snowfall Over the Arctic Ocean Using CloudSat Observations
Cabaj, A.1; Kushner, P. J.1; Fletcher, C. G.2; Howell, S.3; Petty, A. A.4,5
2020-02-28
发表期刊GEOPHYSICAL RESEARCH LETTERS
ISSN0094-8276
EISSN1944-8007
出版年2020
卷号47期号:4
文章类型Article
语种英语
国家Canada; USA
英文摘要

In the absence of widespread snowfall observations over the Arctic Ocean, reanalysis products provide a wide range of estimates of time-evolving snowfall rates over Arctic sea ice, and it can be difficult to determine which product is most representative. In this work, Arctic snowfall rates retrieved from 2006 to 2016 CloudSat observations and snowfall products from three reanalyses are assessed. The products can be brought into encouraging agreement over the region on interannual time scales once differences in spatial representativeness and temporal sampling are accounted for. This motivates the use of CloudSat's snowfall product to calibrate reanalysis snowfall. The calibration is carried out for four Arctic quadrants and combined to produce regionally resolved and consistent estimates of interannually varying snowfall. Calibrated reanalysis snowfall inputs are then used to drive the NASA Eulerian Snow On Sea Ice Model, reducing the interproduct spread in the resulting simulated snow depths across the Arctic.


Plain Language Summary Snow on Arctic sea ice impacts global climate in many ways. Because the Arctic is a remote region, we have few direct measurements of snow depth on Arctic sea ice. We can use snow models, which take input of snowfall rates from numerical model-based products that incorporate observations, to estimate this snow depth. However, we are unsure which of these models best describes the actual amount of snowfall over the Arctic Ocean. In this study, we examine how well snowfall rates from satellite observations and model-based snowfall products agree over the Arctic Ocean. We find that the snowfall rates are broadly well correlated, for different seasons and years, despite the differences between how the satellite snowfall and the model-based snowfall are derived. We then calibrate the snowfall from each model-based product to better match the satellite snowfall and apply this calibration to products used to predict snow depth on sea ice. This calibration provides a measurable reduction of uncertainty and gives us a more confident estimate of snow depth that can be compared directly to in situ observations and used to better estimate related quantities like sea ice thickness.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000529120100030
WOS关键词SEA-ICE THICKNESS ; RADAR ; DEPTH ; PRECIPITATION ; RETRIEVAL ; UNCERTAINTIES ; VARIABILITY ; ANTARCTICA
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/279696
专题气候变化
作者单位1.Univ Toronto, Dept Phys, Toronto, ON, Canada;
2.Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON, Canada;
3.Environm & Climate Change Canada, Climate Res Div, Toronto, ON, Canada;
4.NASA, Cryospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD USA;
5.Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
推荐引用方式
GB/T 7714
Cabaj, A.,Kushner, P. J.,Fletcher, C. G.,et al. Constraining Reanalysis Snowfall Over the Arctic Ocean Using CloudSat Observations[J]. GEOPHYSICAL RESEARCH LETTERS,2020,47(4).
APA Cabaj, A.,Kushner, P. J.,Fletcher, C. G.,Howell, S.,&Petty, A. A..(2020).Constraining Reanalysis Snowfall Over the Arctic Ocean Using CloudSat Observations.GEOPHYSICAL RESEARCH LETTERS,47(4).
MLA Cabaj, A.,et al."Constraining Reanalysis Snowfall Over the Arctic Ocean Using CloudSat Observations".GEOPHYSICAL RESEARCH LETTERS 47.4(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cabaj, A.]的文章
[Kushner, P. J.]的文章
[Fletcher, C. G.]的文章
百度学术
百度学术中相似的文章
[Cabaj, A.]的文章
[Kushner, P. J.]的文章
[Fletcher, C. G.]的文章
必应学术
必应学术中相似的文章
[Cabaj, A.]的文章
[Kushner, P. J.]的文章
[Fletcher, C. G.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。