GSTDTAP  > 地球科学
DOI10.5194/acp-20-995-2020
Using CESM-RESFire to understand climate-fire-ecosystem interactions and the implications for decadal climate variability
Zou, Yufei1,6; Wang, Yuhang1; Qian, Yun2; Tian, Hanqin3; Yang, Jia4; Alvarado, Ernesto5
2020-01-27
发表期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
ISSN1680-7316
EISSN1680-7324
出版年2020
卷号20期号:2页码:995-1020
文章类型Article
语种英语
国家USA
英文摘要

Large wildfires exert strong disturbance on regional and global climate systems and ecosystems by perturbing radiative forcing as well as the carbon and water balance between the atmosphere and land surface, while shortand long-term variations in fire weather, terrestrial ecosystems, and human activity modulate fire intensity and reshape fire regimes. The complex climate-fire-ecosystem interactions were not fully integrated in previous climate model studies, and the resulting effects on the projections of future climate change are not well understood. Here we use the fully interactive REgion-Specific ecosystem feedback Fire model (RESFire) that was developed in the Community Earth System Model (CESM) to investigate these interactions and their impacts on climate systems and fire activity. We designed two sets of decadal simulations using CESM-RESFire for present-day (2001-2010) and future (2051-2060) scenarios, respectively, and conducted a series of sensitivity experiments to assess the effects of individual feedback pathways among climate, fire, and ecosystems. Our implementation of RESFire, which includes online land-atmosphere coupling of fire emissions and fire-induced land cover change (LCC), reproduces the observed aerosol optical depth (AOD) from space-based Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products and ground-based AErosol RObotic NETwork (AERONET) data; it agrees well with carbon budget benchmarks from previous studies. We estimate the global averaged net radiative effect of both fire aerosols and fire-induced LCC at - 0.59 +/- 0.52 W m(-2), which is dominated by fire aerosol- cloud interactions (-0.82 +/- 0.19 W m(-2)), in the presentday scenario under climatological conditions of the 2000s. The fire-related net cooling effect increases by similar to 170 % to -1.60 +/- 0.27 W m(-2) in the 2050s under the conditions of the Representative Concentration Pathway 4.5 (RCP4.5) scenario. Such considerably enhanced radiative effect is attributed to the largely increased global burned area (+19 %) and fire carbon emissions (+100 %) from the 2000s to the 2050s driven by climate change. The net ecosystem exchange (NEE) of carbon between the land and atmosphere components in the simulations increases by 33 % accordingly, implying that biomass burning is an increasing carbon source at short-term timescales in the future. High-latitude regions with prevalent peatlands would be more vulnerable to increased fire threats due to climate change, and the increase in fire aerosols could counter the projected decrease in anthropogenic aerosols due to air pollution control policies in many regions. We also evaluate two distinct feedback mechanisms that are associated with fire aerosols and fire-induced LCC, respectively. On a global scale, the first mechanism imposes positive feedbacks to fire activity through enhanced droughts with suppressed precipitation by fire aerosol-cloud interactions, while the second one manifests as negative feedbacks due to reduced fuel loads by fire consumption and postfire tree mortality and recovery processes. These two feed-back pathways with opposite effects compete at regional to global scales and increase the complexity of climate-fire-ecosystem interactions and their climatic impacts.


领域地球科学
收录类别SCI-E
WOS记录号WOS:000509693100002
WOS关键词COMMUNITY ATMOSPHERE MODEL ; CLOUD MICROPHYSICS SCHEME ; BIOMASS BURNING EMISSIONS ; NET PRIMARY PRODUCTION ; WESTERN UNITED-STATES ; EARTH SYSTEM MODEL ; BROWN CARBON ; GLOBAL CARBON ; FOREST-FIRE ; LAND-USE
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
被引频次:25[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/278593
专题地球科学
作者单位1.Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA;
2.Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA;
3.Auburn Univ, Sch Forestry & Wildlife Sci, Int Ctr Climate & Global Change Res, Auburn, AL 36849 USA;
4.Mississippi State Univ, Forest & Wildlife Res Ctr, Coll Forest Resources, Starkville, MS 39762 USA;
5.Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA;
6.Pacific Northwest Natl Lab, Richland, WA 99354 USA
推荐引用方式
GB/T 7714
Zou, Yufei,Wang, Yuhang,Qian, Yun,et al. Using CESM-RESFire to understand climate-fire-ecosystem interactions and the implications for decadal climate variability[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2020,20(2):995-1020.
APA Zou, Yufei,Wang, Yuhang,Qian, Yun,Tian, Hanqin,Yang, Jia,&Alvarado, Ernesto.(2020).Using CESM-RESFire to understand climate-fire-ecosystem interactions and the implications for decadal climate variability.ATMOSPHERIC CHEMISTRY AND PHYSICS,20(2),995-1020.
MLA Zou, Yufei,et al."Using CESM-RESFire to understand climate-fire-ecosystem interactions and the implications for decadal climate variability".ATMOSPHERIC CHEMISTRY AND PHYSICS 20.2(2020):995-1020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zou, Yufei]的文章
[Wang, Yuhang]的文章
[Qian, Yun]的文章
百度学术
百度学术中相似的文章
[Zou, Yufei]的文章
[Wang, Yuhang]的文章
[Qian, Yun]的文章
必应学术
必应学术中相似的文章
[Zou, Yufei]的文章
[Wang, Yuhang]的文章
[Qian, Yun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。