GSTDTAP  > 气候变化
Melting Snow and Other Surprises on Mt. Everest
admin
2020-06-25
发布年2020
语种英语
国家美国
领域气候变化
正文(英文)An AWS being installed. Note the tents of Camp IV in the background, and the exposed glacier ice visible behind. Photo credit: Baker Perry / National Geographic.
An automatic weather station (AWS) being installed on Everest’s South Col at 7,945 m (~26,066 ft). Note the tents of Camp IV in the background, and the exposed glacier ice visible behind. [Photo credit: Baker Perry / National Geographic.]

 

Despite freezing temperatures, snow is melting on Mount Everest. That’s just one finding in a recent study of weather data provided by a new network of five automated weather stations on Earth’s tallest mountain. The network includes two of the highest altitude weather stations on Earth, Balcony Station at 8,430 m (~27,658 ft) and South Col at 7,945 m (~26,066 ft), and offers “an unrivaled natural platform for measuring ongoing climate change across the full elevation range of Asia’s water towers,” Tom Matthews and his colleagues write in their new article published as an Early Online Release in the Bulletin of the American Meteorological Society.

Photos of the automatic weather stations installed during the 2019 Everest Expedition. Note the shovel handles used to mount the wind speed sensors on the Balcony weather station (upper right).
Photos of the automatic weather stations installed during the 2019 Everest Expedition. Note the shovel handles used to mount the wind speed sensors on the Balcony weather station (upper right).

 

The snowmelt is attributed to extreme insolation in the high altitudes of the Himalaya. It enables “considerable” melt up to Camp II at an altitude of 6,464 m (~21,207 ft), “despite freezing air temperatures,” the study reports. And modeling with the data the five stations are providing shows not only is melting occurring at South Col even with average air temperatures of -10°C—which means melting may be common at the tops of all but a small portion of the peaks in the Himalaya—but also is likely happening even at Everest’s peak, Matthews and his team report.

Uncertainties in the extrapolation are considerable, but we cannot rule out that limited melting during the monsoon may be occurring at the summit.

The authors note that while snow melting at the peak of the world’s tallest mountain may be “symbolic” as Earth continues to warm, sublimation of the snowpack appears to be a far greater contributor to its loss at such high altitudes. This finding has implications for the amount of snow that actually falls at extreme altitudes:

The amount of mass potentially lost by sublimation on the upper slopes of Everest, coupled with the presence of permanent snow cover over much of this terrain, raises the interesting prospect that snowfall at such altitudes in the Himalaya may be more substantial than previously thought. For example, the modeled sublimation of 128 mm at the South Col (in five months) is almost eight times greater than the predicted annual precipitation at such altitude. Windblown snow from lower elevations may account for much of the discrepancy, but the winds are also known to deflate the snow on Everest, sometimes to spectacular effect. Future work is clearly needed to rule out the possibility of a much more vigorous hydrological cycle at these extreme elevations.

Matthews and his coauthors conclude that the data the five AWSs have collected so far offer “rich opportunities” to adjust and improve mountain weather forecasting and melt modeling.

URL查看原文
来源平台American Meteorological Society
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/277639
专题气候变化
推荐引用方式
GB/T 7714
admin. Melting Snow and Other Surprises on Mt. Everest. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。