GSTDTAP  > 地球科学
DOI10.5194/acp-2020-443
Impact of organic acids on chloride depletion of inland transported sea spray aerosols
Bojiang Su, Zeming Zhuo, Yuzhen Fu, Wei Sun, Ying Chen, Xubing Du, Yuxiang Yang, Si Wu, Fugui Huang, Duohong Chen, Lei Li, Guohua Zhang, Xinhui Bi, and Zhen Zhou
2020-06-08
发表期刊Atmospheric Chemistry and Physics
出版年2020
英文摘要Heterogeneous reactions on sea spray aerosols (SSA) are the main pathway to drive the circulation of chlorine, nitrogen, and sulfur in the atmosphere. The release of Cl will significantly affect the physicochemical properties of SSA. However, the impact of organic acids and mixing state on chloride depletion of SSA is still unclear. Hence, the size and chemical composition of individual SSA particles during the East Asian summer monsoon were investigated by a single particle aerosol mass spectrometer (SPAMS). According to the chemical composition, SSA particles were classified into SSA-Aged, SSA-Bio and SSA-Ca. In comparison to the aged Na-rich SSA particles (SSA-Aged), some additional organic species related to biological origin were observed in SSA-Bio, and each of two types accounts for approximately 50 % of total SSA particles. SSA-Ca may associated with organic shell of Na-rich SSA particles, which only accounts for ~ 3 %. Strongly positive correlations between Na and organic acids (including formate, acetate, propionate, pyruvate, oxalate, malonate, succinate, and glutarate) were observed for the SSA-Aged (r2 = 0.52, p < 0.01) and SSA-Bio (r2 = 0.61, p < 0.01), indicating the significance of organic acids in the chloride depletion during inland transport. The contribution of these organic acids to the chloride depletion is estimated to be up to 34 %. Interestingly, the degree of chloride depletion is distinctly different between SSA-Aged and SSA-Bio. It is most probably attributed to the associated organic coating in the SSA-Bio particles, which inhibit the displacement reactions between acids and chloride. As revealed from the mixing state of SSA-Bio, Cl / Na ratio increases with increasing phosphate and organic nitrogen, which is known to originate from biological activities. This finding provides some basis for the improvement of modeling simulations in chlorine circulation and a comprehensive understanding of the effects of organics on chloride depletion of SSA particles.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/274359
专题地球科学
推荐引用方式
GB/T 7714
Bojiang Su, Zeming Zhuo, Yuzhen Fu, Wei Sun, Ying Chen, Xubing Du, Yuxiang Yang, Si Wu, Fugui Huang, Duohong Chen, Lei Li, Guohua Zhang, Xinhui Bi, and Zhen Zhou. Impact of organic acids on chloride depletion of inland transported sea spray aerosols[J]. Atmospheric Chemistry and Physics,2020.
APA Bojiang Su, Zeming Zhuo, Yuzhen Fu, Wei Sun, Ying Chen, Xubing Du, Yuxiang Yang, Si Wu, Fugui Huang, Duohong Chen, Lei Li, Guohua Zhang, Xinhui Bi, and Zhen Zhou.(2020).Impact of organic acids on chloride depletion of inland transported sea spray aerosols.Atmospheric Chemistry and Physics.
MLA Bojiang Su, Zeming Zhuo, Yuzhen Fu, Wei Sun, Ying Chen, Xubing Du, Yuxiang Yang, Si Wu, Fugui Huang, Duohong Chen, Lei Li, Guohua Zhang, Xinhui Bi, and Zhen Zhou."Impact of organic acids on chloride depletion of inland transported sea spray aerosols".Atmospheric Chemistry and Physics (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bojiang Su, Zeming Zhuo, Yuzhen Fu, Wei Sun, Ying Chen, Xubing Du, Yuxiang Yang, Si Wu, Fugui Huang, Duohong Chen, Lei Li, Guohua Zhang, Xinhui Bi, and Zhen Zhou]的文章
百度学术
百度学术中相似的文章
[Bojiang Su, Zeming Zhuo, Yuzhen Fu, Wei Sun, Ying Chen, Xubing Du, Yuxiang Yang, Si Wu, Fugui Huang, Duohong Chen, Lei Li, Guohua Zhang, Xinhui Bi, and Zhen Zhou]的文章
必应学术
必应学术中相似的文章
[Bojiang Su, Zeming Zhuo, Yuzhen Fu, Wei Sun, Ying Chen, Xubing Du, Yuxiang Yang, Si Wu, Fugui Huang, Duohong Chen, Lei Li, Guohua Zhang, Xinhui Bi, and Zhen Zhou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。