GSTDTAP  > 气候变化
DOI10.1126/science.aau7187
Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice
Krzysztof Krawczyk; Shuai Xue; Peter Buchmann; Ghislaine Charpin-El-Hamri; Pratik Saxena; Marie-Didiée Hussherr; Jiawei Shao; Haifeng Ye; Mingqi Xie; Martin Fussenegger
2020-05-29
发表期刊Science
出版年2020
英文摘要There is increasing interest in using designer cells to produce or deliver therapeutics. Achieving direct communication between such cells and electronic devices would allow precise control of therapies. Krawczyk et al. describe a bioelectronic interface that uses wireless-powered electrical stimulation of cells to promote the release of insulin (see the Perspective by Brier and Dordick). The authors engineered human β cells to respond to membrane depolarization by rapidly releasing insulin from intracellular storage vesicles. A bioelectronic device that incorporates the cells can be wirelessly triggered by an external field generator. When subcutaneously implanted in type 1 diabetic mice, the device could be triggered to restore normal blood glucose levels. Science , this issue p. [993][1]; see also p. [936][2] Sophisticated devices for remote-controlled medical interventions require an electrogenetic interface that uses digital electronic input to directly program cellular behavior. We present a cofactor-free bioelectronic interface that directly links wireless-powered electrical stimulation of human cells to either synthetic promoter–driven transgene expression or rapid secretion of constitutively expressed protein therapeutics from vesicular stores. Electrogenetic control was achieved by coupling ectopic expression of the L-type voltage-gated channel CaV1.2 and the inwardly rectifying potassium channel Kir2.1 to the desired output through endogenous calcium signaling. Focusing on type 1 diabetes, we engineered electrosensitive human β cells (Electroβ cells). Wireless electrical stimulation of Electroβ cells inside a custom-built bioelectronic device provided real-time control of vesicular insulin release; insulin levels peaked within 10 minutes. When subcutaneously implanted, this electrotriggered vesicular release system restored normoglycemia in type 1 diabetic mice. [1]: /lookup/doi/10.1126/science.aau7187 [2]: /lookup/doi/10.1126/science.abb9122
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/271758
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Krzysztof Krawczyk,Shuai Xue,Peter Buchmann,et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice[J]. Science,2020.
APA Krzysztof Krawczyk.,Shuai Xue.,Peter Buchmann.,Ghislaine Charpin-El-Hamri.,Pratik Saxena.,...&Martin Fussenegger.(2020).Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice.Science.
MLA Krzysztof Krawczyk,et al."Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice".Science (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Krzysztof Krawczyk]的文章
[Shuai Xue]的文章
[Peter Buchmann]的文章
百度学术
百度学术中相似的文章
[Krzysztof Krawczyk]的文章
[Shuai Xue]的文章
[Peter Buchmann]的文章
必应学术
必应学术中相似的文章
[Krzysztof Krawczyk]的文章
[Shuai Xue]的文章
[Peter Buchmann]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。