GSTDTAP  > 地球科学
DOI10.5194/acp-2020-398
Impacts of coagulation on the appearance time method for sub-3 nm particle growth rate evaluation and their corrections
Runlong Cai, Chenxi Li, Xu-Cheng He, Chenjuan Deng, Yiqun Lu, Rujing Yin, Chao Yan, Lin Wang, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
2020-05-15
发表期刊Atmospheric Chemistry and Physics
出版年2020
英文摘要The growth rate of atmospheric new particles is a key parameter that determines their survival probability to become cloud condensation nuclei and hence their impact on the climate. There have been several methods to estimate the new particle growth rate. However, due to the impact of coagulation and measurement uncertainties, it is still challenging to estimate the initial growth rate of sub-3 nm particles, especially in polluted environments with high background aerosol concentrations. In this study, we explore the feasibility of the appearance time method to estimate the growth rate of sub-3 nm particles. The principle of the appearance time method and the impacts of coagulation on the retrieved growth rate are clarified. New formulae in both discrete and continuous spaces are proposed to correct the impacts of coagulation. Aerosol dynamic models are used to test the new formulae. New particle formation in urban Beijing is used to illustrate the importance to consider the impacts of coagulation on sub-3 nm particle growth rate and its calculation. We show that the conventional appearance time method needs to be corrected when the impacts of coagulation sink, coagulation source, and particle coagulation growth are non-negligible compared to the condensation growth. Under the simulation conditions with a constant vapor concentration, the corrected growth rate agrees with the theoretical growth rates. The variation of vapor concentration is found to impact growth rate obtained with the appearance time method. Under the simulation conditions with a varying vapor concentration, the average bias of the corrected 1.5–3 nm particle growth rate range from 6–44 %. During the test new particle formation event in urban Beijing, the corrected condensation growth rate of sub-3 nm particles was in accordance with the growth rate contributed by sulfuric acid condensation, whereas the conventional appearance time method overestimated the condensation growth rate of 1.5 nm particles by 80 %.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/267572
专题地球科学
推荐引用方式
GB/T 7714
Runlong Cai, Chenxi Li, Xu-Cheng He, Chenjuan Deng, Yiqun Lu, Rujing Yin, Chao Yan, Lin Wang, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma. Impacts of coagulation on the appearance time method for sub-3 nm particle growth rate evaluation and their corrections[J]. Atmospheric Chemistry and Physics,2020.
APA Runlong Cai, Chenxi Li, Xu-Cheng He, Chenjuan Deng, Yiqun Lu, Rujing Yin, Chao Yan, Lin Wang, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma.(2020).Impacts of coagulation on the appearance time method for sub-3 nm particle growth rate evaluation and their corrections.Atmospheric Chemistry and Physics.
MLA Runlong Cai, Chenxi Li, Xu-Cheng He, Chenjuan Deng, Yiqun Lu, Rujing Yin, Chao Yan, Lin Wang, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma."Impacts of coagulation on the appearance time method for sub-3 nm particle growth rate evaluation and their corrections".Atmospheric Chemistry and Physics (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Runlong Cai, Chenxi Li, Xu-Cheng He, Chenjuan Deng, Yiqun Lu, Rujing Yin, Chao Yan, Lin Wang, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma]的文章
百度学术
百度学术中相似的文章
[Runlong Cai, Chenxi Li, Xu-Cheng He, Chenjuan Deng, Yiqun Lu, Rujing Yin, Chao Yan, Lin Wang, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma]的文章
必应学术
必应学术中相似的文章
[Runlong Cai, Chenxi Li, Xu-Cheng He, Chenjuan Deng, Yiqun Lu, Rujing Yin, Chao Yan, Lin Wang, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。