GSTDTAP  > 地球科学
DOI10.5194/acp-2020-317
Direct and semi-direct radiative forcing of biomass burning aerosols over the Southeast Atlantic (SEA) and its sensitivity to absorbing properties: a regional climate modeling study
Marc Mallet, Fabien Solmon, Pierre Nabat, Nellie Elguindi, Fabien Waquet, Dominique Bouniol, Andrew Mark Sayer, Kerry Meyer, Romain Roehrig, Martine Michou, Paquita Zuidema, Cyrille Flamant, Jens Redemann, and Paola Formenti
2020-05-18
发表期刊Atmospheric Chemistry and Physics
出版年2020
英文摘要Simulations are performed for the period 2000–2015 by two different regional climate models, ALADIN–Climat and RegCM, to quantify the direct and semi-direct radiative effects of biomass burning aerosols (BBA) in the Southeast Atlantic (SEA) region. The approach of using two different independent RCMs reinforces the robustness of the results. Different simulations have been performed using strongly absorbing BBA in accordance with recent in situ observations over the SEA. For the July–August–September (JAS) season, the single scattering albedo (SSA) and total aerosol optical depth (AOD) simulated by the ALADIN–Climat and RegCM models are consistent with the MACv2 climatology and MERRA-2 and CAMS-RA reanalyses near the biomass burning emission sources. However, the above-cloud AOD is slightly underestimated compared to satellite (MODIS and POLDER) data during the transport over the SEA. The direct radiative effect exerted at the continental and oceanic surfaces by BBA is significant in both models and the radiative effects at the top of the atmosphere indicate a remarkable regional contrast over SEA (in all-sky conditions), with a cooling (warming) north (south) of 10° S, which is in agreement with the recent MACv2 climatology. In addition, the two models indicate that BBA are responsible for an important shortwave radiative heating of ~ 0.5–1 K per day over SEA during JAS with maxima between 2 and 4 km above mean sea-level. At these altitudes, BBA increase air temperature by ~ 0.2–0.5 K, with the highest values being co-located with low stratocumulus clouds. Vertical changes in air temperature limit the subsidence over SEA creating a cyclonic anomaly. The opposite effect is simulated over the continent due to the increase in lower troposphere stability. The BBA semi-direct effect on the lower troposphere circulation is found to be consistent between the two models. Changes in the cloud fraction are moderate in response to the presence of smoke and the models differ over the Gulf of Guinea. Finally, the results indicate an important sensitivity of the direct and semi-direct effects to the absorbing properties of BBA.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/267559
专题地球科学
推荐引用方式
GB/T 7714
Marc Mallet, Fabien Solmon, Pierre Nabat, Nellie Elguindi, Fabien Waquet, Dominique Bouniol, Andrew Mark Sayer, Kerry Meyer, Romain Roehrig, Martine Michou, Paquita Zuidema, Cyrille Flamant, Jens Redemann, and Paola Formenti. Direct and semi-direct radiative forcing of biomass burning aerosols over the Southeast Atlantic (SEA) and its sensitivity to absorbing properties: a regional climate modeling study[J]. Atmospheric Chemistry and Physics,2020.
APA Marc Mallet, Fabien Solmon, Pierre Nabat, Nellie Elguindi, Fabien Waquet, Dominique Bouniol, Andrew Mark Sayer, Kerry Meyer, Romain Roehrig, Martine Michou, Paquita Zuidema, Cyrille Flamant, Jens Redemann, and Paola Formenti.(2020).Direct and semi-direct radiative forcing of biomass burning aerosols over the Southeast Atlantic (SEA) and its sensitivity to absorbing properties: a regional climate modeling study.Atmospheric Chemistry and Physics.
MLA Marc Mallet, Fabien Solmon, Pierre Nabat, Nellie Elguindi, Fabien Waquet, Dominique Bouniol, Andrew Mark Sayer, Kerry Meyer, Romain Roehrig, Martine Michou, Paquita Zuidema, Cyrille Flamant, Jens Redemann, and Paola Formenti."Direct and semi-direct radiative forcing of biomass burning aerosols over the Southeast Atlantic (SEA) and its sensitivity to absorbing properties: a regional climate modeling study".Atmospheric Chemistry and Physics (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Marc Mallet, Fabien Solmon, Pierre Nabat, Nellie Elguindi, Fabien Waquet, Dominique Bouniol, Andrew Mark Sayer, Kerry Meyer, Romain Roehrig, Martine Michou, Paquita Zuidema, Cyrille Flamant, Jens Redemann, and Paola Formenti]的文章
百度学术
百度学术中相似的文章
[Marc Mallet, Fabien Solmon, Pierre Nabat, Nellie Elguindi, Fabien Waquet, Dominique Bouniol, Andrew Mark Sayer, Kerry Meyer, Romain Roehrig, Martine Michou, Paquita Zuidema, Cyrille Flamant, Jens Redemann, and Paola Formenti]的文章
必应学术
必应学术中相似的文章
[Marc Mallet, Fabien Solmon, Pierre Nabat, Nellie Elguindi, Fabien Waquet, Dominique Bouniol, Andrew Mark Sayer, Kerry Meyer, Romain Roehrig, Martine Michou, Paquita Zuidema, Cyrille Flamant, Jens Redemann, and Paola Formenti]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。