GSTDTAP  > 气候变化
DOI10.1029/2018GL081275
A Positive Feedback Onto ENSO Due to Tropical Instability Wave (TIW)-Induced Chlorophyoll Effects in the Pacific
Tian, Feng1,2; Zhang, Rong-Hua1,2,3,4; Wang, Xiujun5
2019-01-28
发表期刊GEOPHYSICAL RESEARCH LETTERS
ISSN0094-8276
EISSN1944-8007
出版年2019
卷号46期号:2页码:889-897
文章类型Article
语种英语
国家Peoples R China
英文摘要

Tropical instability waves (TIWs) induce large physical and biological perturbations, which have a feedback onto the tropical Pacific climate and ecosystem. However, the extent to which TIW-induced chlorophyll perturbations (Chl(TIW)) can influence El Nirio-Southern Oscillation (ENSO) remains unknown. Here we used a hybrid-coupled model to investigate the Chl(TIW) effect on ENSO. Two experiments are conducted, one with the Chl(TIW) effect being represented in the control run (CTRL) and other with the Chl(TIW) effect being purposely excluded by filtering out Chl(TIW) signals (FILT). Results show that the amplitude of ENSO is increased by 27% in CTRL compared to FILT. Chl(TIW) tends to modulate the penetrative solar radiation in the upper ocean, acting to weaken the intensity of TIWs. Then, the weakened TIWs lead to a reduction in the equatorward meridional heat transport and consequently less warming effect on the cold tongue. Therefore, La Nina conditions tend to be intensified, and ENSO amplitude is increased.


Plain Language Summary Tropical instability waves (TIWs) are prominent cusp-like waves in the tropical Pacific and Atlantic, with the period of 20-40 days and wavelength of 600-1,000 km. TIWs can induce large perturbations in chlorophyll (Chl(TIW)) and sea surface temperature. Given that chlorophyll absorbs solar radiation in the upper ocean and alters the upper-ocean temperature structure, it is natural to ask the following question: Can TIW-related mesoscale biology processes likeChl(TIW) influence the tropical climate? Here we examine the Chl(TIW) effect on El Nino-Southern Oscillation (ENSO) using a coupled physics-biogeochemistry model, with the Chl(TIW) effect taken into account or not. Results suggest that the Chl(TIW) effects tend to increase ENSO amplitude by 27%. This is because the Chl(TIW) effect weakens the intensity of TIW itself, which inevitably decreases the meridional heat transport onto the equator and consequently less warming effect on the cold tongue in the eastern equatorial Pacific. As a result, La Nina conditions tend to be intensified and ENSO amplitude is increased. Our study contributes to resolving the ongoing debate on the role of biological processes in modulating ENSO amplitude (i.e., increase or decrease), and improves current understanding of ENSO modulation.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000458607400040
WOS关键词HYBRID COUPLED MODEL ; EQUATORIAL PACIFIC ; OCEAN PHYSICS ; PENETRATIVE RADIATION ; HEAT-BUDGET ; CLIMATE ; IMPACT ; CIRCULATION ; BIOLOGY
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/26409
专题气候变化
作者单位1.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China;
2.Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing, Peoples R China;
3.Pilot Natl Lab Marine Sci & Technol, Qingdao, Peoples R China;
4.Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao, Peoples R China;
5.Beijing Normal Univ, Joint Ctr Global Change Studies, Coll Global Change & Earth Syst Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Tian, Feng,Zhang, Rong-Hua,Wang, Xiujun. A Positive Feedback Onto ENSO Due to Tropical Instability Wave (TIW)-Induced Chlorophyoll Effects in the Pacific[J]. GEOPHYSICAL RESEARCH LETTERS,2019,46(2):889-897.
APA Tian, Feng,Zhang, Rong-Hua,&Wang, Xiujun.(2019).A Positive Feedback Onto ENSO Due to Tropical Instability Wave (TIW)-Induced Chlorophyoll Effects in the Pacific.GEOPHYSICAL RESEARCH LETTERS,46(2),889-897.
MLA Tian, Feng,et al."A Positive Feedback Onto ENSO Due to Tropical Instability Wave (TIW)-Induced Chlorophyoll Effects in the Pacific".GEOPHYSICAL RESEARCH LETTERS 46.2(2019):889-897.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tian, Feng]的文章
[Zhang, Rong-Hua]的文章
[Wang, Xiujun]的文章
百度学术
百度学术中相似的文章
[Tian, Feng]的文章
[Zhang, Rong-Hua]的文章
[Wang, Xiujun]的文章
必应学术
必应学术中相似的文章
[Tian, Feng]的文章
[Zhang, Rong-Hua]的文章
[Wang, Xiujun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。