GSTDTAP  > 资源环境科学
DOI10.1038/s41893-020-0486-9
CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction
Pan, Shu-Yuan1; Chen, Yi-Hung2; Fan, Liang-Shih3; Kim, Hyunook4; Gao, Xiang5; Ling, Tung-Chai6; Chiang, Pen-Chi7; Pei, Si-Lu8; Gu, Guowei9
2020-03-02
发表期刊NATURE SUSTAINABILITY
ISSN2398-9629
出版年2020
卷号3期号:5页码:399-405
文章类型Article
语种英语
国家Taiwan; USA; South Korea; Peoples R China
英文摘要

CO2 mineralization and utilization using alkaline solid wastes has been rapidly developed over the last ten years and is considered one of the promising technologies to stabilize solid wastes while combating global warming. Despite the publication of a number of reports evaluating the performance of the processes, no study on the estimation of the global CO2 reduction potential by CO2 mineralization and utilization using alkaline solid wastes has been reported. Here, we estimate global CO2 mitigation potentials facilitated by CO2 mineralization and utilization as a result of accelerated carbonation using various types of alkaline solid wastes in different regions of the world. We find that a substantial amount of CO2 (that is, 4.02 Gt per year) could be directly fixed and indirectly avoided by CO2 mineralization and utilization, corresponding to a reduction in global anthropogenic CO2 emissions of 12.5%. In particular, China exhibits the greatest potential worldwide to implement CO2 mineralization and utilization, where it would account for a notable reduction of up to 19.2% of China's annual total emissions. Our study reveals that CO2 mineralization and utilization using alkaline solid wastes should be regarded as one of the essential green technologies in the portfolio of strategic global CO2 mitigation.


CO2 mineralization and utilization via alkaline solid wastes shows promise for both stabilizing solid waste and tackling climate change, but evidence of its actual CO2 reduction potential is scant. This study estimates that CO2 mineralization and utilization could lead to a 12.5% global reduction of CO2 emissions.


领域资源环境
收录类别SCI-E ; SSCI
WOS记录号WOS:000517740000001
WOS关键词ACCELERATED CARBONATION ; PERFORMANCE EVALUATION ; ENERGY-EFFICIENCY ; INDUSTRIAL-WASTE ; FLY-ASH ; CAPTURE ; TECHNOLOGIES ; CEMENT ; WATER
WOS类目Green & Sustainable Science & Technology ; Environmental Sciences ; Environmental Studies
WOS研究方向Science & Technology - Other Topics ; Environmental Sciences & Ecology
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/249398
专题资源环境科学
作者单位1.Natl Taiwan Univ, Dept Bioenvironm Syst Engn, Taipei, Taiwan;
2.Natl Taipei Univ Technol, Dept Chem Engn & Biotechnol, Taipei, Taiwan;
3.Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA;
4.Univ Seoul, Dept Environm Engn, Seoul, South Korea;
5.Zhejiang Univ, Coll Energy Engn, State Key Lab Clean Energy Utilizat, Hangzhou, Peoples R China;
6.Hunan Univ, Coll Civil Engn, Key Lab Green & Adv Civil Engn Mat & Applicat Tec, Changsha, Peoples R China;
7.Natl Taiwan Univ, Grad Inst Environm Engn, Taipei, Taiwan;
8.China Tianying Inc, Res Inst Tianying Shanghai, Shanghai, Peoples R China;
9.Tongji Univ, Coll Environm Sci & Engn, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Pan, Shu-Yuan,Chen, Yi-Hung,Fan, Liang-Shih,et al. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction[J]. NATURE SUSTAINABILITY,2020,3(5):399-405.
APA Pan, Shu-Yuan.,Chen, Yi-Hung.,Fan, Liang-Shih.,Kim, Hyunook.,Gao, Xiang.,...&Gu, Guowei.(2020).CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction.NATURE SUSTAINABILITY,3(5),399-405.
MLA Pan, Shu-Yuan,et al."CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction".NATURE SUSTAINABILITY 3.5(2020):399-405.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pan, Shu-Yuan]的文章
[Chen, Yi-Hung]的文章
[Fan, Liang-Shih]的文章
百度学术
百度学术中相似的文章
[Pan, Shu-Yuan]的文章
[Chen, Yi-Hung]的文章
[Fan, Liang-Shih]的文章
必应学术
必应学术中相似的文章
[Pan, Shu-Yuan]的文章
[Chen, Yi-Hung]的文章
[Fan, Liang-Shih]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。