GSTDTAP  > 地球科学
DOI10.1038/s41561-020-0536-y
Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data
Lognonne, P.1,2; Banerdt, W. B.3; Pike, W. T.4; Giardini, D.5; Christensen, U.6; Garcia, R. F.7; Kawamura, T.1; Kedar, S.3; Knapmeyer-Endrun, B.8; Margerin, L.9; Nimmo, F.10; Panning, M.3; Tauzin, B.11; Scholz, J. -R.6; Antonangeli, D.12; Barkaoui, S.1; Beucler, E.13; Bissig, F.5; Brinkman, N.5; Calvet, M.9; Ceylan, S.5; Charalambous, C.4; Davis, P.14; Van Driel, M.5; Drilleau, M.1; Fayon, L.15; Joshi, R.6; Kenda, B.1; Khan, A.5,16; Knapmeyer, M.17; Lekic, V.18; McClean, J.4; Mimoun, D.7; Murdoch, N.7; Pan, L.11; Perrin, C.1; Pinot, B.7; Pou, L.10; Menina, S.1; Rodriguez, S.1,2; Schmelzbach, C.5; Schmerr, N.18; Sollberger, D.5; Spiga, A.2,19; Staehler, S.5; Stott, A.4; Stutzmann, E.1; Tharimena, S.3; Widmer-Schnidrig, R.20; Andersson, F.5; Ansan, V.13; Beghein, C.14; Boese, M.5; Bozdag, E.21; Clinton, J.5; Daubar, I.3; Delage, P.22; Fuji, N.1; Golombek, M.3; Grott, M.17; Horleston, A.23; Hurst, K.3; Irving, J.24; Jacob, A.1; Knollenberg, J.17; Krasner, S.3; Krause, C.17; Lorenz, R.25; Michaut, C.2,26; Myhill, R.23; Nissen-Meyer, T.27; Ten Pierick, J.5; Plesa, A. -C.17; Quantin-Nataf, C.11; Robertsson, J.5; Rochas, L.28; Schimmel, M.29; Smrekar, S.3; Spohn, T.17,30; Teanby, N.23; Tromp, J.24; Vallade, J.28; Verdier, N.28; Vrettos, C.31; Weber, R.32; Banfield, D.33; Barrett, E.3; Bierwirth, M.6; Calcutt, S.34; Compaire, N.7; Johnson, C. L.35,36; Mance, D.5; Euchner, F.5; Kerjean, L.28; Mainsant, G.7; Mocquet, A.13; Rodriguez Manfredi, J. A.37; Pont, G.28; Laudet, P.28; Nebut, T.1; De Raucourt, S.1; Robert, O.1; Russell, C. T.14; Sylvestre-Baron, A.28; Tillier, S.1; Warren, T.38; Wieczorek, M.39; Yana, C.28; Zweifel, P.5
2020-02-24
发表期刊NATURE GEOSCIENCE
ISSN1752-0894
EISSN1752-0908
出版年2020
卷号13期号:3页码:213-+
文章类型Article
语种英语
国家France; USA; England; Switzerland; Germany; Spain; Canada
英文摘要

The crust beneath the InSight lander on Mars is altered or fractured to 8-11 km depth and may bear volatiles, according to an analysis of seismic noise and wave scattering recorded by InSight's seismometer.


Mars's seismic activity and noise have been monitored since January 2019 by the seismometer of the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander. At night, Mars is extremely quiet; seismic noise is about 500 times lower than Earth's microseismic noise at periods between 4 s and 30 s. The recorded seismic noise increases during the day due to ground deformations induced by convective atmospheric vortices and ground-transferred wind-generated lander noise. Here we constrain properties of the crust beneath InSight, using signals from atmospheric vortices and from the hammering of InSight's Heat Flow and Physical Properties (HP3) instrument, as well as the three largest Marsquakes detected as of September 2019. From receiver function analysis, we infer that the uppermost 8-11 km of the crust is highly altered and/or fractured. We measure the crustal diffusivity and intrinsic attenuation using multiscattering analysis and find that seismic attenuation is about three times larger than on the Moon, which suggests that the crust contains small amounts of volatiles.


领域地球科学 ; 气候变化
收录类别SCI-E
WOS记录号WOS:000515477400003
WOS关键词RECEIVER FUNCTIONS ; SINGLE-STATION ; MISSION ; NOISE ; INVERSION ; WAVES ; DECONVOLUTION ; ATTENUATION ; ALGORITHM ; MODEL
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/249342
专题地球科学
气候变化
作者单位1.Univ Paris, Inst Phys Globe Paris, CNRS, Paris, France;
2.Inst Univ France, Paris, France;
3.CALTECH, Jet Prop Lab, Pasadena, CA USA;
4.Imperial Coll London, Dept Elect & Elect Engn, London, England;
5.Swiss Fed Inst Technol, Inst Geophys, Zurich, Switzerland;
6.Max Planck Inst Solar Syst Res, Gottingen, Germany;
7.Inst Super Aeronaut & Espace SUPAERO, Toulouse, France;
8.Univ Cologne, Bensberg Observ, Bergisch Gladbach, Germany;
9.Univ Toulouse III Paul Sabatier, CNRS, CNES, Inst Rech Astrophys & Planetol, Toulouse, France;
10.Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA;
11.Univ Claude Bernard Lyon 1, Univ Lyon, ENS, CNRS,Lab Geol Lyon Terre,Planetes,Environm, Villeurbanne, France;
12.Sorbonne Univ, Museum Natl Hist Nat, UMR 7590, CNRS,IMPMC, Paris, France;
13.Univ Angers, Univ Nantes, CNRS, Lab Planetol & Geodynam,UMR6112, Nantes, France;
14.Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA;
15.Space Explorat Inst, Neuchatel, Switzerland;
16.Univ Zurich, Inst Theoret Phys, Zurich, Switzerland;
17.DLR Inst Planetary Res, Berlin, Germany;
18.Univ Maryland, Dept Geol, College Pk, MD 20742 USA;
19.Sorbonne Univ, CNRS, ENS, LMD,IPSL,Ecole Polytech, Paris, France;
20.Stuttgart Univ, Black Forest Observ, Wolfach, Germany;
21.Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA;
22.Ecole Ponts ParisTech, Lab Navier, CERMES, CNRS, Marne La Vallee, France;
23.Univ Bristol, Sch Earth Sci, Bristol, Avon, England;
24.Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA;
25.Johns Hopkins Appl Phys Lab, Laurel, MD USA;
26.UCBL, Ecole Normale Super Lyon, Univ Lyon, CNRS,Lab Geol Lyon Terre,Planetes,Environm, Lyon, France;
27.Univ Oxford, Dept Earth Sci, Oxford, England;
28.Ctr Natl Etud Spatiales, Toulouse, France;
29.Inst Earth Sci Jaume Almera ICTJA, Barcelona, Spain;
30.Int Space Sci Inst, Bern, Switzerland;
31.Tech Univ Kaiserslautern, Div Soil Mech & Fdn Engn, Kaiserslautern, Germany;
32.NASA, MSFC, NSSTC, Huntsville, AL USA;
33.Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY USA;
34.Univ Oxford, Dept Phys, Oxford, England;
35.Univ British Columbia, Dept Earth Ocean & Atmospher Sci, Vancouver, BC, Canada;
36.Planetary Sci Inst, Tucson, AZ USA;
37.Inst Nacl Tecn Aeroesp, Ctr Astrobiol, Torrejon De Ardoz, Spain;
38.Univ Oxford, Atmospher Ocean & Planetary Phys, Oxford, England;
39.Univ Cote Azur, Observ Cote Azur, Lab Lagrange, CNRS, Nice, France
推荐引用方式
GB/T 7714
Lognonne, P.,Banerdt, W. B.,Pike, W. T.,et al. Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data[J]. NATURE GEOSCIENCE,2020,13(3):213-+.
APA Lognonne, P..,Banerdt, W. B..,Pike, W. T..,Giardini, D..,Christensen, U..,...&Zweifel, P..(2020).Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data.NATURE GEOSCIENCE,13(3),213-+.
MLA Lognonne, P.,et al."Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data".NATURE GEOSCIENCE 13.3(2020):213-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lognonne, P.]的文章
[Banerdt, W. B.]的文章
[Pike, W. T.]的文章
百度学术
百度学术中相似的文章
[Lognonne, P.]的文章
[Banerdt, W. B.]的文章
[Pike, W. T.]的文章
必应学术
必应学术中相似的文章
[Lognonne, P.]的文章
[Banerdt, W. B.]的文章
[Pike, W. T.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。