GSTDTAP  > 资源环境科学
First Results from NASA’s ICESat-2 Mission Map 16 Years of Melting Ice Sheets
admin
2020-04-30
发布年2020
语种英语
国家美国
领域资源环境
正文(英文)
The Thwaites Ice Shelf as captured by NASA's Operation IceBridge. Credit: NASA / James Yungel

The Thwaites Ice Shelf as captured by NASA's Operation IceBridge. Credit: NASA / James Yungel

Using the most advanced Earth-observing laser instrument NASA has ever flown in space, a team of scientists including glaciologists from Scripps Institution of Oceanography at the University of California San Diego have made precise measurements of how the Greenland and Antarctic ice sheets have changed over a 16-year period.

In a new study published in the journal Science on April 30, scientists found that net loss of ice from Antarctica, along with Greenland’s shrinking ice sheet, has been responsible for 14 millimeters (0.55 inches) of sea-level rise to the global ocean between 2003 and 2019 – slightly less than a third of the total amount of sea level rise observed. In Antarctica, sea-level rise is being driven by the loss of floating ice shelves melting in a warming ocean. The ice shelves help hold back the flow of land-based ice that contributes to sea-level rise into the ocean.

The findings come from the Ice, Cloud and land Elevation Satellite 2 (ICESat-2), which was launched into orbit in Fall 2018 and began taking detailed global elevation measurements, including over Earth’s frozen regions. By comparing the new data with measurements taken by the original ICESat from 2003 to 2009, researchers have generated a comprehensive portrait of the complexities of ice sheet change and insights into the future of Greenland and Antarctica.

“Antarctica and Greenland are so vast, and so inaccessible that you can’t make a dent in measurements from observations on the ground,” said Helen Amanda Fricker, a glaciologist at Scripps Oceanography who specializes in studying ice shelves, and  a co-author of the study. “The vantage point from space gives the big picture perspective of what is happening, and is now providing us an uninterrupted record of measurements.”

The study found that Greenland’s ice sheet, or grounded ice, lost an average of 200 gigatons of ice per year over the last 16 years, and Antarctica’s ice sheet lost an average of 118 gigatons of ice per year. In total, 5,088 gigatons of ice were lost from Greenland and Antarctica’s ice sheets from 2003 to  2019. One gigaton of ice is enough to fill 400,000 Olympic-sized swimming pools.

The ICESat-2 laser works by sending 10,000 laser pulses a second to Earth’s surface that measure the height of ice sheets, glaciers, sea ice, and vegetation by calculating the time it takes a handful of those pulses to return to the satellite. Each photon has a time tag, and these tags can combine with the GPS location to pinpoint its exact place and height on the ground. Scientists compared these new measurements with those from the original ICESat mission to calculate the mass of ice lost or gained.

“If you watch a glacier or ice sheet for a month, or a year, you’re not going to learn much about what the climate is doing to it,” said Ben Smith, a glaciologist at the University of Washington and lead author of the new paper. “We now have a 16-year span between ICESat and ICESat-2 and can be much more confident that changes we’re seeing in the ice have to do with the long-term changes in the climate.”

This shows the amount of ice gained or lost by Antarctica between 2003 and 2019. Dark reds and purples show large average rates of ice loss near the Antarctic coast. Credit: Smith, et all.

The study found that Greenland’s ice sheet, or grounded ice, lost an average of 200 gigatons of ice per year over the last 16 years, and Antarctica’s ice sheet lost an average of 118 gigatons of ice per year. In total, 5,088 gigatons of ice were lost from Greenland and Antarctica’s ice sheets from 2003 to  2019. One gigaton of ice is enough to fill 400,000 Olympic-sized swimming pools.

This is one of the first times that researchers have measured loss of floating ice shelves around Antarctica simultaneously with loss of the continent’s ice sheet, allowing them to better understand the interconnectedness and mechanisms driving change. 

“The new analysis reveals the ice sheets’ response to changes in climate with unprecedented detail, revealing clues as to why and how the ice sheets are reacting the way they are”, said Alex Gardner, a glaciologist at NASA’s Jet Propulsion Laboratory in Pasadena, California, and co-author on the paper.

In many key regions of Antarctica, the contribution to sea-level rise is being driven by the loss of floating ice shelves, which normally help hold back the flow of additional ice into the ocean from land. Of the global sea-level rise that resulted from ice sheet meltwater and iceberg calving, about two-thirds of it came from Greenland, the other third from Antarctica.

 Warming ocean water is likely to blame for eroding the floating ice shelves, said the researchers. Ice that melts from ice shelves doesn’t raise sea levels since it’s already floating – just like an ice cube in a full cup of water doesn’t overflow the glass when it melts. But the ice shelves provide stability for the glaciers and ice sheets behind them.

“It’s like an architectural buttress that holds up a cathedral,” Fricker said. “The ice shelves hold the ice sheet up. If you take away the ice shelves, or even if you thin them, you’re reducing that buttressing force, so the grounded ice can flow faster.”

Ice shelves can be particularly difficult to measure, said Fricker, because of their rough surfaces, with crevasses and ridges. The precision and high resolution of ICESat-2 allowed researchers to measure overall, big picture changes. They found that ice shelves in West Antarctica, where many of the continent’s fastest-moving glaciers are located, are losing mass. Patterns of thinning over the ice shelves in West Antarctica show that Thwaites and Crosson ice shelves have thinned the most, an average of about five meters (16 feet) and three meters (10 feet) per year, respectively.

The ICESat-2 measurements also showed that in Antarctica the ice sheet is getting thicker in parts of the continent’s interior, likely as a result of increased snowfall. But the massive loss of ice from the continent’s margins far outweighs any small gains in the interior. 

The amount of ice gained or lost by Greenland between 2003 and 2019. Credit: Smith, et al./Science

In Greenland, there was a significant amount of thinning of coastal glaciers. The Kangerdulgssuaq and Jakobshavn glaciers, for example, have lost four to six meters (14 to 20 feet) of elevation per year. Warmer summer temperatures have melted ice from the surface of glaciers and ice sheets, and in some places warmer ocean water erodes away the ice at their fronts.

As for understanding the future of Greenland and Antarctica, Fricker says the new insights gained from ICESat-2 will help with future prediction.

“We will now be able to run more accurate models to better predict sea-level rise,” said Fricker. “When it comes to climate change, better predictions and improved understanding can help us as a society work towards bending the sea-level rise curve and adapting to the future.”

For more information on ICESat-2, visit https://nasa.gov/icesat-2 or https://icesat-2.gsfc.nasa.gov

Adapted from a news release from NASA

About Scripps OceanographyScripps Institution of Oceanography at the University of California San Diego, is one of the oldest, largest, and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today on every continent and in every ocean. The institution has a staff of more than 1,400 and annual expenditures of approximately $195 million from federal, state, and private sources. Scripps operates oceanographic research vessels recognized worldwide for their outstanding capabilities. Equipped with innovative instruments for ocean exploration, these ships constitute mobile laboratories and observatories that serve students and researchers from institutions throughout the world. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 430,000 visitors each year. Learn more at scripps.ucsd.edu and follow us at Facebook, Twitter, and Instagram.About UC San DiegoAt the University of California San Diego, we embrace a culture of exploration and experimentation. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to look deeper, challenge expectations and redefine conventional wisdom. As one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth and make our world a better place. Learn more at www.ucsd.edu.
URL查看原文
来源平台Scripps Institution of Oceanography
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/248122
专题资源环境科学
推荐引用方式
GB/T 7714
admin. First Results from NASA’s ICESat-2 Mission Map 16 Years of Melting Ice Sheets. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。