GSTDTAP  > 地球科学
Scientists develop high-performance lithium-sulfur batteries
admin
2020-04-16
发布年2020
语种英语
国家美国
领域地球科学
正文(英文)
IMAGE

IMAGE: Schematic illustration for molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries view more 

Credit: DICP

Recently, research groups led by Prof. LIU Jian and Prof. WU Zhongshuai from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have developed Fe1-xS-decorated mesoporous carbon spheres as the nanoreactor, which can be applied as lithium-sulfur battery cathode.

The nanoreactor showed excellent polysulfide catalytic activity and cyclic stability. The study was published in Advanced Energy Materials on Apr. 16.

Lithium-sulfur batteries have a high theoretical energy density of 2600 Wh kg-1 and theoretical capacity of 1675 mAh g-1. They are promising as a high-energy battery.

However, the slow conversion reaction dynamics of sulfur in the process of charging and discharging lead to low utilization rate of sulfur and serious shuttle effect. This further causes low capacity and stability of lithium-sulfur batteries.

Therefore, a reasonably designed electrocatalytic system is desired, so that catalytic transformation of polysulfide can be realized efficiently and steadily under high sulfur loading, resulting in high cyclic stability of lithium-sulfur battery.

In the current study, the researchers designed a mesoporous carbon nanoreactor decorated with highly dispersed Fe1-xS electrocatalyst nanoparticles (Fe1-xS-NC), and applied it as lithium-sulfur battery cathode for high catalytic activity and high sulfur loading.

The nanoreactor is featured with low mass density, high porosity, and highly dispersed electrocatalyst, which significantly improves the adsorption and catalytic conversion capacity of polysulfides. 

The researchers found that there was virtually no decay in capacity of Fe1-xS-NC from an initial value of 1070 mAh g-1 after 200 cycles and under a current density of 0.5 C.

"The nanoreactor design strategy provides a new protocol for building high-capacity and long-cycle rechargeable batteries," said Prof. LIU. "It will also open an avenue for design of safer and high-energy-density Li-metal batteries" Prof. WU added.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert! - Earth Science
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/242681
专题地球科学
推荐引用方式
GB/T 7714
admin. Scientists develop high-performance lithium-sulfur batteries. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。