GSTDTAP  > 地球科学
Making a connection: Two ways that fault segments may overcome their separation
admin
2020-04-07
发布年2020
语种英语
国家美国
领域地球科学
正文(英文)

In complex fault zones, multiple seemingly disconnected faults can potentially rupture at once, increasing the chance of a large damaging earthquake. Recent earthquakes including the 1992 Landers, 1999 Hector Mine and 2019 Ridgecrest earthquakes in California, among others, ruptured in this way. But how can seismologists predict whether individual fault segments might be connected and rupture together during a seismic event?

One way might be to look for clues that the segments are connected below the surface, according to David Oglesby, a researcher at the University of California, Riverside. His study published in the Bulletin of the Seismological Society of America suggests that the pattern of slip distributions on fault segments can indicate whether segments separated by a gap at the surface are connected within a few kilometers of the earth's surface.

And in a second paper published in BSSA, Hui Wang of the Chinese Earthquake Administration and colleagues conclude that a rupture along a stepover fault, where parallel fault segments overlap in the direction of a rupture, might be able to "jump" over a wider gap between the fault segments than previously thought.

In both cases, making the connection between fault segments could have a significant impact on assessing seismic hazards for a region. "The potential maximum rupture length, hence the maximum magnitude [of an earthquake], is an important parameter for assessing seismic hazards," said Mian Liu of the University of Missouri-Columbia, a co-author on the Wang study.

"The details of connectivity can have a controlling influence on whether you get a big earthquake that jumps across what appear to be multiple fault segments or a small earthquake that remains on a small segment," Oglesby said.

Oglesby began thinking about this problem of discerning connections at depth after a conference where one of the speakers suggested that completely disconnected faults would have different slip patterns than faults connected at depth. Modeling that looked at slip distribution--broadly, where slip occurs along a fault--might be useful, he thought.

In his 3D dynamic rupture modeling of fault segments disconnected by gaps, Oglesby looked in particular at how rapidly the slip decays to zero at the edge of a fault segment on the surface. Does the amount of slip gradually decrease toward zero at the edge, or does it quickly decrease to zero?

The models suggest that "all things being equal, if a fault appears to be disconnected at the surface but is connected at relatively shallow depth, then typically the slip will decay very rapidly to zero at the edge of the fault segment," Oglesby said.

Shallow depth in this case means that the segments are connected at about 1 to 2 kilometers (0.6 to 1.2 miles) below the surface, he noted. If the fault remains completely disconnected or is connected deeper than 1 to 2 kilometers, "then the slip will not decay to zero as rapidly at the edge of the surface fault segment," Oglesby explained, since the deeper connection is too far away to have a strong effect on surface slip distribution.

Oglesby stressed that his models are simplified, and don't account for other factors such as the high stress and strain and potential rock failure around the edges of fault segments. "And just because you get this rapid decay, it doesn't necessarily mean that [a fault] is connected at depth," he noted. "There are lots of factors that affect fault slip. It's a clue, but not a smoking gun."

In their modeling study, Wang and colleagues took a closer look at what factors might influence a rupture's jump between parallel fault segments in a stepover system. They were prompted by events such as the 2016 magnitude 7.8 Kaikoura, New Zealand, earthquake, where rupture jumped between nearly parallel fault segments as much as 15 to 20 kilometers apart.

The researchers found that by including the background effects of changes in stress in a stepover, ruptures could jump over a wider space than the 5 kilometers (about 3.1 miles) predicted by some earlier studies.

Wang and colleagues' models suggest instead that a rupture may jump more than 15 kilometers (9.3 miles) in a releasing or extensional stepover, or 7 kilometers (4.3 miles) in a restraining or compressive stepover fault.

Their models combine data on long-term tectonic stress changes with changes in stress predicted by fault dynamic rupture models, providing a fuller picture of stress changes along a fault over a timescale of both millions of years and a few seconds. "We realized that we needed to bridge these different fault models to better understand fault mechanics," said Liu.

Liu also cautioned that their models only measure one aspect of complex fault geometry. "Although many factors could contribute to rupture propagation across stepovers, the step width is perhaps one of the easiest to measure, so hopefully our results would lead to more studies and a better understanding of complex fault systems."

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert! - Earth Science
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/231655
专题地球科学
推荐引用方式
GB/T 7714
admin. Making a connection: Two ways that fault segments may overcome their separation. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。