GSTDTAP  > 地球科学
Wildfire cycles and climate change
admin
2020-02-24
发布年2020
语种英语
国家美国
领域地球科学
正文(英文)

Wildfire, a natural phenomenon, existed on the Earth over 400 Ma. However, the mechanisms underlying wildfire-climate interactions are not clear. Wildfire forcing has long been underestimated or overlooked in climate change studies.

A study led by AN Zhisheng from the Institute of Earth Environment (IEE) of the Chinese Academy of Sciences revealed a linkage between glacial cycles and inland Asian high-intensity wildfire events by analyzing high-resolution soot deposition over the last 2.6 million years. The study was published online in PNAS on Feb. 24.

As ice ages have come and gone during the Quaternary period, mountain glaciers on the central Asian plateau have grown and shrunk with climate oscillations.

To determine how the dry glacial periods and wetter interglacial periods affected wildfire events, the researchers reconstructed a unique soot record to reflect regional-to-continental high intensity fires for the central Asian plateau by measuring soot and char particles in more than 1300 loess (wind-blown silt) sediment samples.

They measured black carbon in the loess sediment and distinguished soot (submicron-sized particles that are produced under fast-burning, high intensity conditions) from char (larger particles that are produced by lower intensity, smoldering combustion), which made it possible to investigate specific relationships among the types of fires and climate variables.

This record is the first to show clear glacial-interglacial cycles of wildfire. The results revealed that high intensity fires were associated with drier glacial periods when dust loads in the atmosphere were high and the ice-volume modulated aridification affected wildfire occurrences in the Quaternary climate system.

"Wildfires could act as a source of soluble iron that fertilized the oceans, promoting the drawdown of atmospheric carbon dioxide," said Dr. HAN Yongming, first author of the paper. "These results suggest possible connections between fires, dust, and climate through the iron cycle and potential effects of wildfire on the global climate system."

Recognition of the impact of wildfires on the iron cycle could help us understand climate change not only over orbital glacial-interglacial cycles but also over longer geological timescales and in the future as well.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert! - Earth Science
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/228525
专题地球科学
推荐引用方式
GB/T 7714
admin. Wildfire cycles and climate change. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。