GSTDTAP  > 气候变化
Greener spring, warmer air
admin
2020-02-21
发布年2020
语种英语
国家美国
领域气候变化
正文(英文)
IMAGE

IMAGE: Woodland leaf-out along tree line demonstrates contrasting canopy greenness before and after leaf-out. view more 

Credit: Gengsuo Jia

Advanced leaf-out, or early sprouting and opening leaves, is a direct response to climate change. In northern hemisphere, leaf-out has advanced at a rate of 4-5 days per decade on average since 1980s, according to synthesis of over 40 satellite-derived phenology studies across decades and regions. Scientists are curious to know if, in turn, this advancement would affect climate by modulating seasonal cycles of surface energy, water, and carbon budgets.

A new study, published in Nature Climate Change on Feb 17, 2020 showed that advanced leaf-out enhances annual surface warming in the Northern Hemisphere. The study was carried out by researchers at the Institute of Atmospheric Physics with collaborators from Lawrence Berkeley National Laboratory and Nanjing University of Information Science and Technology.

"There are many studies of how vegetation is affected by climate change. However, impact of vegetation change on climate is underemphasized." said Dr. Xiyan Xu, the first author of the study.

According to the study, advanced leaf-out intensifies water vapor release. "Enhanced water vapor is transported poleward and leads to snow and cloud cover anomalies in northern high latitudes." said Xu,"That explains why there are unusual temperature hotspots in the north, which is beyond the regions of advanced leaf-out."

The warming due to earlier leaf-out is amplified in the cold regions, such as Canadian Arctic Archipelago, east and west edges of Siberia, and southeastern Tibetan Plateau, because warming causes snow cover decline.

"Snow reflects solar radiation." Explained Xu, "When there is less snow on the ground, the reflectivity of Earth's surface decreases. Then, more incoming solar radiation is absorbed by the surface, and the surface warms, consequently."

Dr. Gensuo Jia, the corresponding author of the study noted that if the warming continues, leaf-out date will shift further earlier.

"The positive feedbacks loop between climate and spring leaf phenology is likely to amplify warming in the northern high-latitudes." said Jia, "The impact of vegetation change on climate is profound in spring when snow is melting, with incoming East Asian summer monsoon, and strengthening southerly North American low-level jet."

Taking these factors into consideration, the study concludes that in early spring, if bare ground is replaced with dense canopy, it would make a great difference to seasonal transition of the climate system.

###

The study was supported by Strategic Priority Research Program of the Chinese Academy of Sciences (CASEarth), the Natural Science Foundation of China, U.S. Department of Energy, Office of Science, Biological and Environmental Research, Regional and Global Climate Modeling Program through the RUBISCO Scientific Focus Area. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User and the Lawrencium computational cluster resource provided by the IT Division at the Lawrence Berkeley National Laboratory.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert!
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/227490
专题气候变化
推荐引用方式
GB/T 7714
admin. Greener spring, warmer air. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。