GSTDTAP
DOI10.1111/gcb.14818
Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification
Fitzer, Susan C.1; 39;Connor, Wayne2
2019-12-01
发表期刊GLOBAL CHANGE BIOLOGY
ISSN1354-1013
EISSN1365-2486
出版年2019
卷号25期号:12页码:4105-4115
文章类型Article
语种英语
国家Scotland; Australia
英文摘要

Commercial shellfish aquaculture is vulnerable to the impacts of ocean acidification driven by increasing carbon dioxide (CO2) absorption by the ocean as well as to coastal acidification driven by land run off and rising sea level. These drivers of environmental acidification have deleterious effects on biomineralization. We investigated shell biomineralization of selectively bred and wild-type families of the Sydney rock oyster Saccostrea glomerata in a study of oysters being farmed in estuaries at aquaculture leases differing in environmental acidification. The contrasting estuarine pH regimes enabled us to determine the mechanisms of shell growth and the vulnerability of this species to contemporary environmental acidification. Determination of the source of carbon, the mechanism of carbon uptake and use of carbon in biomineral formation are key to understanding the vulnerability of shellfish aquaculture to contemporary and future environmental acidification. We, therefore, characterized the crystallography and carbon uptake in the shells of S. glomerata, resident in habitats subjected to coastal acidification, using high-resolution electron backscatter diffraction and carbon isotope analyses (as delta C-13). We show that oyster families selectively bred for fast growth and families selected for disease resistance can alter their mechanisms of calcite crystal biomineralization, promoting resilience to acidification. The responses of S. glomerata to acidification in their estuarine habitat provide key insights into mechanisms of mollusc shell growth under future climate change conditions. Importantly, we show that selective breeding in oysters is likely to be an important global mitigation strategy for sustainable shellfish aquaculture to withstand future climate-driven change to habitat acidification.


英文关键词aquaculture calcification carbon pathway climate change estuary low pH Saccostrea glomerata selectively bred families Sydney rock oyster
领域气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000494691700010
WOS关键词OCEAN ACIDIFICATION ; COASTAL ACIDIFICATION ; ENERGY-METABOLISM ; CO2 LEVELS ; SHELL ; IMPACTS ; TEMPERATURE ; HOMEOSTASIS ; ADAPTATION ; RESPONSES
WOS类目Biodiversity Conservation ; Ecology ; Environmental Sciences
WOS研究方向Biodiversity & Conservation ; Environmental Sciences & Ecology
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/225302
专题环境与发展全球科技态势
作者单位1.Univ Stirling, Inst Aquaculture, Pathfoot Bldg, Stirling FK9 4LA, Scotland;
2.Scottish Univ Environm Res Ctr, Scottish Enterprise Technol Pk, East Kilbride, Scotland;
3.Univ Sydney, Sch Med Sci, Sydney, NSW 2006, Australia;
4.Hunter Local Land Serv, Taree, NSW, Australia;
5.New South Wales Dept Primary Ind, Port Stephens Fisheries Inst, Fisheries NSW, Taylors Beach, NSW, Australia;
6.Univ Sydney, Sch Life & Environm Sci, Sydney, NSW, Australia
推荐引用方式
GB/T 7714
Fitzer, Susan C.,39;Connor, Wayne. Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification[J]. GLOBAL CHANGE BIOLOGY,2019,25(12):4105-4115.
APA Fitzer, Susan C.,&39;Connor, Wayne.(2019).Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification.GLOBAL CHANGE BIOLOGY,25(12),4105-4115.
MLA Fitzer, Susan C.,et al."Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification".GLOBAL CHANGE BIOLOGY 25.12(2019):4105-4115.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fitzer, Susan C.]的文章
[39;Connor, Wayne]的文章
百度学术
百度学术中相似的文章
[Fitzer, Susan C.]的文章
[39;Connor, Wayne]的文章
必应学术
必应学术中相似的文章
[Fitzer, Susan C.]的文章
[39;Connor, Wayne]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。