GSTDTAP
DOI10.1088/1748-9326/ab4d5e
Evaluation and machine learning improvement of global hydrological model-based flood simulations
Yang, Tao1,2,3; Sun, Fubao1,3,4,5; Gentine, Pierre2,6; Liu, Wenbin1; Wang, Hong1; Yin, Jiabo2,7; Du, Muye1,3; Liu, Changming1
2019-11-01
发表期刊ENVIRONMENTAL RESEARCH LETTERS
ISSN1748-9326
出版年2019
卷号14期号:11
文章类型Article
语种英语
国家Peoples R China; USA
英文摘要

A warmer climate is expected to accelerate global hydrological cycle, causing more intense precipitation and floods. Despite recent progress in global flood risk assessment, the accuracy and improvement of global hydrological models (GHMs)-based flood simulation is insufficient for most applications. Here we compared flood simulations from five GHMs under the Inter-Sectoral Impact Model Intercomparison Project 2a (ISIMIP2a) protocol, against those calculated from 1032 gauging stations in the Global Streamflow Indices and Metadata Archive for the historical period 1971?2010. A machine learning approach, namely the long short-term memory units (LSTM) was adopted to improve the GHMs-based flood simulations within a hybrid physics- machine learning approach (using basin-averaged daily mean air temperature, precipitation, wind speed and the simulated daily discharge from GHMs-CaMa-Flood model chain as the inputs of LSTM, and observed daily discharge as the output value). We found that the GHMs perform reasonably well in terms of amplitude of peak discharge but are relatively poor in terms of their timing. The performance indicated great discrepancy under different climate zones. The large difference in performance between GHMs and observations reflected that those simulations require improvements. The LSTM used in combination with those GHMs was then shown to drastically improve the performance of global flood simulations (especially in terms of amplitude of peak discharge), suggesting that the combination of classical flood simulation and machine learning techniques might be a way forward for more robust and confident flood risk assessment.


英文关键词flood simulation machine learning global hydrological model long short-term memory
领域气候变化
收录类别SCI-E
WOS记录号WOS:000499966700001
WOS关键词INTEGRATED MODEL ; WATER ; CHINA ; POPULATION ; IMPACT ; BASIN
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/224698
专题环境与发展全球科技态势
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing, Peoples R China;
2.Columbia Univ, Dept Earth & Environm Engn, New York, NY USA;
3.Univ Chinese Acad Sci, Beijing, Peoples R China;
4.Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi, Peoples R China;
5.Akesu Natl Stn Observat & Res Oasis Agroecosyst, Akesu, Xinjiang, Peoples R China;
6.Columbia Univ, Earth Inst, New York, NY USA;
7.Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan, Hubei, Peoples R China
推荐引用方式
GB/T 7714
Yang, Tao,Sun, Fubao,Gentine, Pierre,et al. Evaluation and machine learning improvement of global hydrological model-based flood simulations[J]. ENVIRONMENTAL RESEARCH LETTERS,2019,14(11).
APA Yang, Tao.,Sun, Fubao.,Gentine, Pierre.,Liu, Wenbin.,Wang, Hong.,...&Liu, Changming.(2019).Evaluation and machine learning improvement of global hydrological model-based flood simulations.ENVIRONMENTAL RESEARCH LETTERS,14(11).
MLA Yang, Tao,et al."Evaluation and machine learning improvement of global hydrological model-based flood simulations".ENVIRONMENTAL RESEARCH LETTERS 14.11(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Tao]的文章
[Sun, Fubao]的文章
[Gentine, Pierre]的文章
百度学术
百度学术中相似的文章
[Yang, Tao]的文章
[Sun, Fubao]的文章
[Gentine, Pierre]的文章
必应学术
必应学术中相似的文章
[Yang, Tao]的文章
[Sun, Fubao]的文章
[Gentine, Pierre]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。