GSTDTAP  > 资源环境科学
DOI10.1002/2016WR018935
Understanding watershed hydrogeochemistry: 2. Synchronized hydrological and geochemical processes drive stream chemostatic behavior
Li, Li1; Bao, Chen2; Sullivan, Pamela L.3,4,5; Brantley, Susan3,4; Shi, Yuning6; Duffy, Christopher1
2017-03-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2017
卷号53期号:3
文章类型Article
语种英语
国家USA
英文摘要

Why do solute concentrations in streams remain largely constant while discharge varies by orders of magnitude? We used a new hydrological land surface and reactive transport code, RT-Flux-PIHM, to understand this long-standing puzzle. We focus on the nonreactive chloride (Cl) and reactive magnesium (Mg) in the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO). Simulation results show that stream discharge comes from surface runoff (Q(s)), soil lateral flow (Q(L)), and deeper groundwater (Q(G)), with Q(L) contributing >70%. In the summer, when high evapotranspiration dries up and disconnects most of the watershed from the stream, Cl is trapped along planar hillslopes. Successive rainfalls connect the watershed and mobilize trapped Cl, which counteracts dilution effects brought about by high water storage (V-w) and maintains chemostasis. Similarly, the synchronous response of clay dissolution rates (Mg source) to hydrological conditions, maintained largely by a relatively constant ratio between wetted mineral surface area A(w) and V-w, controls Mg chemostatic behavior. Sensitivity analysis indicates that cation exchange plays a secondary role in determining chemostasis compared to clay dissolution, although it does store an order-of-magnitude more Mg on exchange sites than soil water. Model simulations indicate that dilution (concentration decrease with increasing discharge) occurs only when mass influxes from soil lateral flow are negligible (e.g., via having low clay surface area) so that stream discharge is dominated by relatively constant mass fluxes from deep groundwater that are unresponsive to surface hydrological conditions.


英文关键词watershed hydrogeochemistry reactive transport concentration-discharge relationship
领域资源环境
收录类别SCI-E
WOS记录号WOS:000400160500034
WOS关键词CONCENTRATION-DISCHARGE RELATIONSHIPS ; SHALE HILLS CATCHMENT ; GOODNESS-OF-FIT ; DISSOLUTION KINETICS ; SPATIAL VARIABILITY ; CO2 CONSUMPTION ; DOUBLE PARADOX ; POROUS-MEDIA ; TRANSPORT ; MODEL
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/22091
专题资源环境科学
作者单位1.Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA;
2.Penn State Univ, John & Willie Leone Dept Energy & Mineral Engn, University Pk, PA 16802 USA;
3.Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA;
4.Penn State Univ, Dept Geosci, University Pk, PA 16802 USA;
5.Univ Kansas, Dept Geog, Lawrence, KS 66045 USA;
6.Penn State Univ, Dept Ecosyst Sci & Management, University Pk, PA 16802 USA
推荐引用方式
GB/T 7714
Li, Li,Bao, Chen,Sullivan, Pamela L.,et al. Understanding watershed hydrogeochemistry: 2. Synchronized hydrological and geochemical processes drive stream chemostatic behavior[J]. WATER RESOURCES RESEARCH,2017,53(3).
APA Li, Li,Bao, Chen,Sullivan, Pamela L.,Brantley, Susan,Shi, Yuning,&Duffy, Christopher.(2017).Understanding watershed hydrogeochemistry: 2. Synchronized hydrological and geochemical processes drive stream chemostatic behavior.WATER RESOURCES RESEARCH,53(3).
MLA Li, Li,et al."Understanding watershed hydrogeochemistry: 2. Synchronized hydrological and geochemical processes drive stream chemostatic behavior".WATER RESOURCES RESEARCH 53.3(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Li]的文章
[Bao, Chen]的文章
[Sullivan, Pamela L.]的文章
百度学术
百度学术中相似的文章
[Li, Li]的文章
[Bao, Chen]的文章
[Sullivan, Pamela L.]的文章
必应学术
必应学术中相似的文章
[Li, Li]的文章
[Bao, Chen]的文章
[Sullivan, Pamela L.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。