GSTDTAP  > 资源环境科学
DOI10.1002/2017WR022135
Uncertainty Quantification of Medium-Term Heat Storage From Short-Term Geophysical Experiments Using Bayesian Evidential Learning
Hermans, Thomas1,2; Nguyen, Frederic3; Klepikova, Maria4; Dassargues, Alain5; Caers, Jef2
2018-04-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2018
卷号54期号:4页码:2931-2948
文章类型Article
语种英语
国家Belgium; USA; Switzerland
英文摘要

In theory, aquifer thermal energy storage (ATES) systems can recover in winter the heat stored in the aquifer during summer to increase the energy efficiency of the system. In practice, the energy efficiency is often lower than expected from simulations due to spatial heterogeneity of hydraulic properties or non-favorable hydrogeological conditions. A proper design of ATES systems should therefore consider the uncertainty of the prediction related to those parameters. We use a novel framework called Bayesian Evidential Learning (BEL) to estimate the heat storage capacity of an alluvial aquifer using a heat tracing experiment. BEL is based on two main stages: pre- and postfield data acquisition. Before data acquisition, Monte Carlo simulations and global sensitivity analysis are used to assess the information content of the data to reduce the uncertainty of the prediction. After data acquisition, prior falsification and machine learning based on the same Monte Carlo are used to directly assess uncertainty on key prediction variables from observations. The result is a full quantification of the posterior distribution of the prediction conditioned to observed data, without any explicit full model inversion. We demonstrate the methodology in field conditions and validate the framework using independent measurements.


Plain Language Summary Geothermal energy can be extracted or stored in shallow aquifers through systems called aquifer thermal energy storage (ATES). In practice, the energy efficiency of those systems is often lower than expected because of the uncertainty related to the subsurface. To assess the uncertainty, a common method in the scientific community is to generate multiple models of the subsurface fitting the available data, a process called stochastic inversion. However this process is time consuming and difficult to apply in practice for real systems. In this contribution, we develop a novel approach to avoid the inversion process called Bayesian Evidential Learning. We are still using many models of the subsurface, but we do not try to fit the available data. Instead, we use the model to learn a direct relationship between the data and the response of interest to the user. For ATES systems, this response corresponds to the energy extracted from the system. It allows to predict the amount of energy extracted with a quantification of the uncertainty. This framework makes uncertainty assessment easier and faster, a prerequisite for robust risk analysis and decision making. We demonstrate the method in a feasibility study of ATES design.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000434186400024
WOS关键词THERMAL-ENERGY STORAGE ; ELECTRICAL-RESISTIVITY TOMOGRAPHY ; AQUIFER FIELD EXPERIMENT ; SENSITIVITY-ANALYSIS ; MONTE-CARLO ; GROUNDWATER-FLOW ; WELL PLACEMENT ; TRACER TESTS ; TRANSPORT ; INVERSE
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21939
专题资源环境科学
作者单位1.Univ Ghent, Dept Geol, Ghent, Belgium;
2.Stanford Univ, Dept Geol Sci, Stanford, CA 94305 USA;
3.Univ Liege, Urban & Environm Engn, Appl Geophys, Liege, Belgium;
4.Swiss Fed Inst Technol, Dept Earth Sci, Zurich, Switzerland;
5.Univ Liege, Urban & Environm Engn, Hydrogeol & Environm Geol, Liege, Belgium
推荐引用方式
GB/T 7714
Hermans, Thomas,Nguyen, Frederic,Klepikova, Maria,et al. Uncertainty Quantification of Medium-Term Heat Storage From Short-Term Geophysical Experiments Using Bayesian Evidential Learning[J]. WATER RESOURCES RESEARCH,2018,54(4):2931-2948.
APA Hermans, Thomas,Nguyen, Frederic,Klepikova, Maria,Dassargues, Alain,&Caers, Jef.(2018).Uncertainty Quantification of Medium-Term Heat Storage From Short-Term Geophysical Experiments Using Bayesian Evidential Learning.WATER RESOURCES RESEARCH,54(4),2931-2948.
MLA Hermans, Thomas,et al."Uncertainty Quantification of Medium-Term Heat Storage From Short-Term Geophysical Experiments Using Bayesian Evidential Learning".WATER RESOURCES RESEARCH 54.4(2018):2931-2948.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hermans, Thomas]的文章
[Nguyen, Frederic]的文章
[Klepikova, Maria]的文章
百度学术
百度学术中相似的文章
[Hermans, Thomas]的文章
[Nguyen, Frederic]的文章
[Klepikova, Maria]的文章
必应学术
必应学术中相似的文章
[Hermans, Thomas]的文章
[Nguyen, Frederic]的文章
[Klepikova, Maria]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。