GSTDTAP  > 地球科学
DOI10.5194/acp-18-8757-2018
Direct radiative effects during intense Mediterranean desert dust outbreaks
Gkikas, Antonis1,2; Obiso, Vincenzo2; Perez Garcia-Pando, Carlos2; Jorba, Oriol2; Hatzianastassiou, Nikos3; Vendrell, Lluis2; Basart, Sara2; Solomos, Stavros1; Gasso, Santiago4; Maria Baldasano, Jose2,4
2018-06-21
发表期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
ISSN1680-7316
EISSN1680-7324
出版年2018
卷号18期号:12页码:8757-8787
文章类型Article
语种英语
国家Greece; Spain
英文摘要

The direct radiative effect (DRE) during 20 intense and widespread dust outbreaks, which affected the broader Mediterranean basin over the period March 2000-February 2013, has been calculated with the NMMB-MONARCH model at regional (Sahara and European continent) and short-term temporal (84 h) scales. According to model simulations, the maximum dust aerosol optical depths (AODs) range from similar to 2.5 to similar to 5.5 among the identified cases. At midday, dust outbreaks locally induce a NET (shortwave plus longwave) strong atmospheric warming (DREATM values up to 285W m(-2); Niger-Chad; dust AODs up to similar to 5.5) and a strong surface cooling (DRENETSURF values down to -337W m(-2)), whereas they strongly reduce the downward radiation at the ground level (DRESURF values down to 589Wm 2 over the Eastern Mediterranean, for extremely high dust AODs, 4.5-5). During night-time, reverse effects of smaller magnitude are found. At the top of the atmosphere (TOA), positive (planetary warming) DREs up to 85 W m(-2) are found over highly reflective surfaces (Niger-Chad; dust AODs up to similar to 5.5) while negative (planetary cooling) DREs down to -184 W m(-2) (Eastern Mediterranean; dust AODs 4.5-5) are computed over dark surfaces at noon. Dust outbreaks significantly affect the mean regional radiation budget, with NET DREs ranging from -8.5 to 0.5 W m(-2), from -31.6 to 2.1 W m(-2), from -22.2 to 2.2 W m(-2) and from -1.7 to 20.4 W m(-2) for TOA, SURF, NETSURF and ATM, respectively. Although the shortwave DREs are larger than the longwave ones, the latter are comparable or even larger at TOA, particularly over the Sahara at midday. As a response to the strong surface day-time cooling, dust outbreaks cause a reduction in the regional sensible and latent heat fluxes by up to 45 and 4 W m(-2), respectively, averaged over land areas of the simulation domain. Dust outbreaks reduce the temperature at 2m by up to 4K during day-time, whereas a reverse tendency of similar magnitude is found during nighttime. Depending on the vertical distribution of dust loads and time, mineral particles heat (cool) the atmosphere by up to 0.9K (0.8 K) during day-time (night-time) within atmospheric dust layers. Beneath and above the dust clouds, mineral particles cool (warm) the atmosphere by up to 1.3K (1.2 K) at noon (night-time). On a regional mean basis, negative feedbacks on the total emitted dust (reduced by 19.5 %) and dust AOD (reduced by 6.9 %) are found when dust interacts with the radiation. Through the consideration of dust radiative effects in numerical simulations, the model positive and negative biases for the downward surface SW or LW radiation, respectively, with respect to Baseline Surface Radiation Network (BSRN) measurements, are reduced. In addition, they also reduce the model near-surface (at 2 m) nocturnal cold biases by up to 0.5K (regional averages), as well as the model warm biases at 950 and 700 hPa, where the dust concentration is maximized, by up to 0.4 K. However, improvements are relatively small and do not happen in all episodes because other model first-order errors may dominate over the expected improvements, and the misrepresentation of the dust plumes' spatiotemporal features and optical properties may even produce a double penalty effect. The enhancement of dust forecasts via data assimilation techniques may significantly improve the results.


领域地球科学
收录类别SCI-E
WOS记录号WOS:000435929400004
WOS关键词CONVECTIVE ADJUSTMENT SCHEME ; REGIONAL CLIMATE MODEL ; MARINE BOUNDARY-LAYER ; ABOVE-CLOUD AEROSOLS ; MONARCH VERSION 1.0 ; SAHARAN DUST ; MINERAL DUST ; AFRICAN DUST ; EAST-ASIA ; OPTICAL-PROPERTIES
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21701
专题地球科学
作者单位1.Natl Observ Athens, Inst Astron Astrophys Space Applicat & Remote Sen, Athens 15236, Greece;
2.Barcelona Supercomp Ctr, Earth Sci Dept, Barcelona, Spain;
3.Univ Ioannina, Dept Phys, Lab Meteorol, Ioannina, Greece;
4.Tech Univ Catalonia, Environm Modelling Lab, Barcelona, Spain
推荐引用方式
GB/T 7714
Gkikas, Antonis,Obiso, Vincenzo,Perez Garcia-Pando, Carlos,et al. Direct radiative effects during intense Mediterranean desert dust outbreaks[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2018,18(12):8757-8787.
APA Gkikas, Antonis.,Obiso, Vincenzo.,Perez Garcia-Pando, Carlos.,Jorba, Oriol.,Hatzianastassiou, Nikos.,...&Maria Baldasano, Jose.(2018).Direct radiative effects during intense Mediterranean desert dust outbreaks.ATMOSPHERIC CHEMISTRY AND PHYSICS,18(12),8757-8787.
MLA Gkikas, Antonis,et al."Direct radiative effects during intense Mediterranean desert dust outbreaks".ATMOSPHERIC CHEMISTRY AND PHYSICS 18.12(2018):8757-8787.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gkikas, Antonis]的文章
[Obiso, Vincenzo]的文章
[Perez Garcia-Pando, Carlos]的文章
百度学术
百度学术中相似的文章
[Gkikas, Antonis]的文章
[Obiso, Vincenzo]的文章
[Perez Garcia-Pando, Carlos]的文章
必应学术
必应学术中相似的文章
[Gkikas, Antonis]的文章
[Obiso, Vincenzo]的文章
[Perez Garcia-Pando, Carlos]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。