GSTDTAP  > 资源环境科学
Scripps Scientists Awarded Nearly $5 Million to Study Triggers of Deadly, Toxic Algal Blooms
admin
2019-10-28
发布年2019
语种英语
国家美国
领域资源环境
正文(英文)
A sea lion suffering from domoic acid poisoning in Los Angeles County in 2019. Photo: Peter Wallerstein/ Marine Animal Rescue

A sea lion suffering from domoic acid poisoning. Photo: Peter Wallerstein/ Marine Animal Rescue

Researchers from Scripps Institution of Oceanography at the University of California San Diego want to know what causes an oceanic algal bloom to turn deadly. 

To find out, researchers are gearing up to hunt for blooms along California’s coast using a suite of technologies that can target and sample ocean microbes and sift through genetic code in real time. All of this is made possible by a new $4.9 million grant from the National Oceanic and Atmospheric Administration (NOAA). The multidimensional effort will build upon recent discoveries about these temperamental microscopic algae under a project funded by NOAA’s Ecology and Oceanography of Harmful Algal Blooms (ECOHAB), a nationally competitive research funding program.

In 2015, the U.S. western coastal economy took a huge hit after the largest toxic algae bloom ever recorded caused massive marine die-offs from central California to the Alaskan peninsula. Entire fishing industries, like the razor clam and Dungeness crab, were temporarily closed and lost millions of dollars. 

Scripps Oceanography researchers uncovered the genetic basis of domoic acid production in toxic algal blooms and the findings were published in Science last year. Domoic acid can accumulate in tissues of shellfish and fish.  When consumed by larger mammals, like sea lions or even humans, domoic acid can cause memory loss, seizures, and even death. The toxin is produced by a specific type of phytoplankton (the microscopic plants that support the marine food chain and produce over 50 percent of the earth’s oxygen) known as the diatom Pseudo-nitzschia. But so far, scientists don’t know why some blooms of algae, which occur all the time in every part of the world, suddenly turn deadly. 

The underlying cellular and oceanographic factors that cause genes of this diatom to produce the toxin remains an enigma, said the project lead investigator Andrew E. Allen, a microbial oceanographer and genomics researcher at Scripps Oceanography and the J. Craig Venter Institute. But it makes all the difference between healthy and productive algae or a death knell for marine production and industry. 

Genomics experts, biological and physical oceanographers and engineers from Scripps Oceanography have teamed up with Monterey Bay Aquarium Research Institute and the Southern California Coastal Water Research Project on the award to deploy a suite of underwater technologies that could help predict when algal blooms will turn toxic. 

The geographic scope of the project stretches along the coastal waters from Monterey Bay to Santa Barbara to Del Mar. 

Semi-permanent instruments developed at Scripps called Wirewalkers will be deployed in the ocean along that geographic range. Wirewalkers harness the energy of ocean waves to move sensors through the water column, capturing detailed measurements of the physical environment where algal blooms are born, said physical oceanographer Drew Lucas, a project co-investigator and developer of the Wirewalker technology.

“The Wirewalker has the capacity to give information about the physical characteristics of water so we can see what’s changing in the environment to make these blooms happen or more toxic,” said Lucas, who also has a joint appointment at Jacobs School of Engineering at UC San Diego. 

The team will set out on a series of month-long sea expeditions in open water to search for the harmful blooms next fall and the following spring, seasons when toxic algal blooms are known to appear. 

Monterey Bay Aquarium Research Institute will supply a torpedo-like, long-range autonomous underwater vehicle outfitted with a third-generation environmental sample processor that can be launched from a small ship into algal blooms off the coast of California. Researchers plan to attach sensors developed at NOAA that, while darting among an algal bloom via remote control, suck in ocean water, and preserve it so that the genetic code of the algae can be examined in the laboratory to search for signs of domoic acid production.

“It’s a challenge to track algal blooms as they develop since satellite imagery is not instantly available and doesn’t tell us what is happening below the ocean surface,” said Clarissa Anderson, a biological oceanographer with expertise in modeling and predicting harmful algal blooms as the executive director of the Southern California Coastal Ocean Observing System at Scripps. These underwater robots will help us detect and follow subsurface blooms and better understand the conditions of the deeper ocean when they occur, she said. 

“We can actually sample deeper water and detect subtle changes in gene expression that are at the heart of the harmful algal bloom mystery,” said Anderson, also a co-investigator on the grant. “This means we will better understand what causes blooms to form in the first place and ultimately build more accurate forecasts.”

Pinpointing and predicting the cellular toxic triggers have implications beyond California. The most recent toxic red tide event occurred off the Gulf Coast of Florida last year causing months of prolonged marine die-offs and slamming the fishing and tourism industries there. 

To multiply, diatoms need large amounts of nitrate, a nutrient found commonly in waters polluted by wastewater. One hypothesis is that water pollution could contribute to toxic algal blooms and that’s why the team will also test near a variety of wastewater discharge hotspots along Orange County in Southern California. 

Bradley Moore, a professor of marine biotechnology and biomedicine at Scripps and the Skaggs School of Pharmacy at UC San Diego, hopes the study will uncover a “lag” or a period in which scientists can predict a bloom is about to happen. Moore, who is also a co-investigator on the project,and Allen will conduct laboratory experiments aimed at understanding cellular and physiological triggers for domoic acid production. They will also sequence the genome of Pseudo-nitzschia strains to better understand the diversity and distribution of domoic acid-related genes.

“Today we seem to be much more reactionary to when a toxic event happens,” Moore said. “But when you’ve got a hurricane barreling down, you don’t want to react when it hits you. You want to be prepared a couple of days beforehand.”

This preparation is of interest to NOAA, which hopes to develop improved ecological forecasts of these harmful algal blooms. 

“This project continues NOAA’s National Centers for Coastal Ocean Science ECOHAB effort to develop ecological forecasts for harmful algal blooms,” says Maggie Broadwater, from the NOAA ECOHAB Research Program. “By combining new information about the genes for domoic acid synthesis with high tech underwater sensors, predictions of bloom toxicity will be vastly improved, leading to earlier and more accurate warnings and improved mitigation strategies.” 

 

-- MacKenzie Elmer

# # # 

 

About Scripps OceanographyScripps Institution of Oceanography at the University of California San Diego, is one of the oldest, largest, and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today on every continent and in every ocean. The institution has a staff of more than 1,400 and annual expenditures of approximately $195 million from federal, state, and private sources. Scripps operates oceanographic research vessels recognized worldwide for their outstanding capabilities. Equipped with innovative instruments for ocean exploration, these ships constitute mobile laboratories and observatories that serve students and researchers from institutions throughout the world. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 430,000 visitors each year. Learn more at scripps.ucsd.edu and follow us at Facebook, Twitter, and Instagram.About UC San DiegoAt the University of California San Diego, we embrace a culture of exploration and experimentation. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to look deeper, challenge expectations and redefine conventional wisdom. As one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth and make our world a better place. Learn more at www.ucsd.edu.
URL查看原文
来源平台Scripps Institution of Oceanography
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/216608
专题资源环境科学
推荐引用方式
GB/T 7714
admin. Scripps Scientists Awarded Nearly $5 Million to Study Triggers of Deadly, Toxic Algal Blooms. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。