Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1002/2017WR021616 |
Signature-Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Empirical Analysis of Fundamental Properties | |
Fenicia, Fabrizio1; Kavetski, Dmitri1,2; Reichert, Peter1; Albert, Carlo1 | |
2018-06-01 | |
发表期刊 | WATER RESOURCES RESEARCH
![]() |
ISSN | 0043-1397 |
EISSN | 1944-7973 |
出版年 | 2018 |
卷号 | 54期号:6页码:3958-3987 |
文章类型 | Article |
语种 | 英语 |
国家 | Switzerland; Australia |
英文摘要 | This study investigates Bayesian signature-domain inference of hydrological models using Approximate Bayesian Computation (ABC) algorithms, and compares it to "traditional" time-domain inference. Our focus is on the quantification of predictive uncertainty in the streamflow time series and on understanding the information content of particular combinations of signatures. A combination of synthetic and real data experiments using conceptual rainfall-runoff models is employed. Synthetic experiments demonstrate: (i) the general consistency of signature and time-domain inferences, (ii) the ability to estimate streamflow error model parameters (reliably quantify streamflow uncertainty) even when calibrating in the signature domain, and (iii) the potential robustness of signature-domain inference when the (probabilistic) hydrological model is misspecified (e.g., by unaccounted timing errors). The experiments also suggest limitations of the signature-domain approach in terms of information loss when general (nonsufficient) statistics are used, and increased computational costs incurred by the ABC implementation. Real data experiments confirm the viability of Bayesian signature-domain inference and its general consistency with time-domain inference in terms of predictive uncertainty quantification. In addition, we demonstrate the utility of the flashiness index for the estimation of streamflow error parameters, and show that signatures based on the Flow Duration Curve alone are insufficient to calibrate parameters controlling streamflow dynamics. Overall, the study further establishes signature-domain inference (implemented using ABC) as a promising method for comparing the information content of hydrological signatures, for prediction under data-scarce conditions, and, under certain circumstances, for mitigating the impact of deficiencies in the formulation of the predictive model. |
英文关键词 | data signature Bayesian model calibration uncertainty approximate Bayesian computation (ABC) flow duration curve flashiness index |
领域 | 资源环境 |
收录类别 | SCI-E |
WOS记录号 | WOS:000440309900012 |
WOS关键词 | FLOW-DURATION CURVES ; CHAIN MONTE-CARLO ; RAINFALL-RUNOFF MODELS ; UNGAUGED BASINS ; WATER AGE ; UNCERTAINTY ; INFERENCE ; PREDICTION ; CATCHMENT ; DREAM((ABC)) |
WOS类目 | Environmental Sciences ; Limnology ; Water Resources |
WOS研究方向 | Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/21563 |
专题 | 资源环境科学 |
作者单位 | 1.Swiss Fed Inst Aquat Sci & Technol, Eawag, Dubendorf, Switzerland; 2.Univ Adelaide, Sch Civil Environm & Min Engn, Adelaide, SA, Australia |
推荐引用方式 GB/T 7714 | Fenicia, Fabrizio,Kavetski, Dmitri,Reichert, Peter,et al. Signature-Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Empirical Analysis of Fundamental Properties[J]. WATER RESOURCES RESEARCH,2018,54(6):3958-3987. |
APA | Fenicia, Fabrizio,Kavetski, Dmitri,Reichert, Peter,&Albert, Carlo.(2018).Signature-Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Empirical Analysis of Fundamental Properties.WATER RESOURCES RESEARCH,54(6),3958-3987. |
MLA | Fenicia, Fabrizio,et al."Signature-Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Empirical Analysis of Fundamental Properties".WATER RESOURCES RESEARCH 54.6(2018):3958-3987. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论