GSTDTAP  > 资源环境科学
DOI10.1002/2017WR021616
Signature-Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Empirical Analysis of Fundamental Properties
Fenicia, Fabrizio1; Kavetski, Dmitri1,2; Reichert, Peter1; Albert, Carlo1
2018-06-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2018
卷号54期号:6页码:3958-3987
文章类型Article
语种英语
国家Switzerland; Australia
英文摘要

This study investigates Bayesian signature-domain inference of hydrological models using Approximate Bayesian Computation (ABC) algorithms, and compares it to "traditional" time-domain inference. Our focus is on the quantification of predictive uncertainty in the streamflow time series and on understanding the information content of particular combinations of signatures. A combination of synthetic and real data experiments using conceptual rainfall-runoff models is employed. Synthetic experiments demonstrate: (i) the general consistency of signature and time-domain inferences, (ii) the ability to estimate streamflow error model parameters (reliably quantify streamflow uncertainty) even when calibrating in the signature domain, and (iii) the potential robustness of signature-domain inference when the (probabilistic) hydrological model is misspecified (e.g., by unaccounted timing errors). The experiments also suggest limitations of the signature-domain approach in terms of information loss when general (nonsufficient) statistics are used, and increased computational costs incurred by the ABC implementation. Real data experiments confirm the viability of Bayesian signature-domain inference and its general consistency with time-domain inference in terms of predictive uncertainty quantification. In addition, we demonstrate the utility of the flashiness index for the estimation of streamflow error parameters, and show that signatures based on the Flow Duration Curve alone are insufficient to calibrate parameters controlling streamflow dynamics. Overall, the study further establishes signature-domain inference (implemented using ABC) as a promising method for comparing the information content of hydrological signatures, for prediction under data-scarce conditions, and, under certain circumstances, for mitigating the impact of deficiencies in the formulation of the predictive model.


英文关键词data signature Bayesian model calibration uncertainty approximate Bayesian computation (ABC) flow duration curve flashiness index
领域资源环境
收录类别SCI-E
WOS记录号WOS:000440309900012
WOS关键词FLOW-DURATION CURVES ; CHAIN MONTE-CARLO ; RAINFALL-RUNOFF MODELS ; UNGAUGED BASINS ; WATER AGE ; UNCERTAINTY ; INFERENCE ; PREDICTION ; CATCHMENT ; DREAM((ABC))
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21563
专题资源环境科学
作者单位1.Swiss Fed Inst Aquat Sci & Technol, Eawag, Dubendorf, Switzerland;
2.Univ Adelaide, Sch Civil Environm & Min Engn, Adelaide, SA, Australia
推荐引用方式
GB/T 7714
Fenicia, Fabrizio,Kavetski, Dmitri,Reichert, Peter,et al. Signature-Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Empirical Analysis of Fundamental Properties[J]. WATER RESOURCES RESEARCH,2018,54(6):3958-3987.
APA Fenicia, Fabrizio,Kavetski, Dmitri,Reichert, Peter,&Albert, Carlo.(2018).Signature-Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Empirical Analysis of Fundamental Properties.WATER RESOURCES RESEARCH,54(6),3958-3987.
MLA Fenicia, Fabrizio,et al."Signature-Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Empirical Analysis of Fundamental Properties".WATER RESOURCES RESEARCH 54.6(2018):3958-3987.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fenicia, Fabrizio]的文章
[Kavetski, Dmitri]的文章
[Reichert, Peter]的文章
百度学术
百度学术中相似的文章
[Fenicia, Fabrizio]的文章
[Kavetski, Dmitri]的文章
[Reichert, Peter]的文章
必应学术
必应学术中相似的文章
[Fenicia, Fabrizio]的文章
[Kavetski, Dmitri]的文章
[Reichert, Peter]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。