GSTDTAP  > 地球科学
Flexible thinking on silicon solar cells
admin
2019-12-22
发布年2019
语种英语
国家美国
领域地球科学
正文(英文)

Crystalline silicon solar panels could be just as effective when incorporated into stretchy wearable electronics or flexible robot skin as they are when used as rigid rooftop panels. KAUST researchers have devised a way to turn rigid silicon into solar cells that can be stretched by a record-breaking 95 percent, while retaining high solar energy capture efficiency of 19 percent.

Although many new solar materials are being investigated, silicon remains by far the photovoltaic industry's favorite. "Monocrystalline silicon remains the material of choice in the PV industry due to its low cost, nontoxicity, excellent reliability, good efficiency and maturity of the manufacturing process," says Nazek El-Atab, a postdoctoral researcher in the labs of Muhammad Mustafa Hussain, who led the research.

One drawback of silicon, for certain applications, is its rigidity, unlike some thin film solar cells. However, these flexible cells either consist of low-cost, low-efficiency organic materials or more efficient but very expensive inorganic materials. Hussain and his team have now taken a significant step toward overcoming this limitation by developing low-cost, high-efficiency, silicon-based stretchy solar cells.

The key step was to take a commercially available rigid silicon panel and coat the back of the panel with a highly stretchable, inexpensive, biocompatible elastomer called ecoflex. The team then used a laser to cut the rigid cell into multiple silicon islands, which were held together by the elastomer backing. Each silicon island remained electrically connected to its neighbors via interdigitated back contacts that ran the length of the flexible solar cell.

The team initially made rectangle-shaped silicon islands, which could be stretched to around 54 percent, Hussain says. "Beyond this value, the strain of stretching led to diagonal cracks within the brittle silicon islands," he says. The team tried different designs to push the stretchability further, mindful that each slice of silicon they removed reduced the area available for light capture. The team tried a diamond pattern before settling on triangles. "Using the triangular pattern, we achieve world record stretchability and efficiency," Hussain says.

The team plans to incorporate the stretchy silicon solar material to power a multisensory artificial skin developed by Hussain's lab. Making solar panels that stretch with even greater flexibility is also a target. "The demonstrated solar cells can be mainly stretched in one direction--parallel to the interdigitated back contacts grid," Hussain says. "We are working to improve the multidirectional stretching capability."

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert! - Earth Science
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/215502
专题地球科学
推荐引用方式
GB/T 7714
admin. Flexible thinking on silicon solar cells. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。