GSTDTAP  > 资源环境科学
DOI10.1002/2017WR021353
Evaluating Spatial Variability in Sediment and Phosphorus Concentration-Discharge Relationships Using Bayesian Inference and Self-Organizing Maps
Underwood, Kristen L.1; Rizzo, Donna M.1; Schroth, Andrew W.2; Dewoolkar, Mandar M.1
2017-12-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2017
卷号53期号:12
文章类型Article
语种英语
国家USA
英文摘要

Given the variable biogeochemical, physical, and hydrological processes driving fluvial sediment and nutrient export, the water science and management communities need data-driven methods to identify regions prone to production and transport under variable hydrometeorological conditions. We use Bayesian analysis to segment concentration-discharge linear regression models for total suspended solids (TSS) and particulate and dissolved phosphorus (PP, DP) using 22 years of monitoring data from 18 Lake Champlain watersheds. Bayesian inference was leveraged to estimate segmented regression model parameters and identify threshold position. The identified threshold positions demonstrated a considerable range below and above the median discharge-which has been used previously as the default breakpoint in segmented regression models to discern differences between pre and post-threshold export regimes. We then applied a Self-Organizing Map (SOM), which partitioned the watersheds into clusters of TSS, PP, and DP export regimes using watershed characteristics, as well as Bayesian regression intercepts and slopes. A SOM defined two clusters of high-flux basins, one where PP flux was predominantly episodic and hydrologically driven; and another in which the sediment and nutrient sourcing and mobilization were more bimodal, resulting from both hydrologic processes at post-threshold discharges and reactive processes (e.g., nutrient cycling or lateral/vertical exchanges of fine sediment) at prethreshold discharges. A separate DP SOM defined two high-flux clusters exhibiting a bimodal concentration-discharge response, but driven by differing land use. Our novel framework shows promise as a tool with broad management application that provides insights into landscape drivers of riverine solute and sediment export.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000423299000018
WOS关键词ARTIFICIAL NEURAL-NETWORKS ; LAKE CHAMPLAIN ; NUTRIENT CONCENTRATION ; BEDLOAD TRANSPORT ; RIVER SEDIMENT ; NEW-ENGLAND ; CLASSIFICATION ; CATCHMENT ; MODEL ; EROSION
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21491
专题资源环境科学
作者单位1.Univ Vermont, Civil & Environm Engn, Burlington, VT 05405 USA;
2.Univ Vermont, Dept Geol, Burlington, VT USA
推荐引用方式
GB/T 7714
Underwood, Kristen L.,Rizzo, Donna M.,Schroth, Andrew W.,et al. Evaluating Spatial Variability in Sediment and Phosphorus Concentration-Discharge Relationships Using Bayesian Inference and Self-Organizing Maps[J]. WATER RESOURCES RESEARCH,2017,53(12).
APA Underwood, Kristen L.,Rizzo, Donna M.,Schroth, Andrew W.,&Dewoolkar, Mandar M..(2017).Evaluating Spatial Variability in Sediment and Phosphorus Concentration-Discharge Relationships Using Bayesian Inference and Self-Organizing Maps.WATER RESOURCES RESEARCH,53(12).
MLA Underwood, Kristen L.,et al."Evaluating Spatial Variability in Sediment and Phosphorus Concentration-Discharge Relationships Using Bayesian Inference and Self-Organizing Maps".WATER RESOURCES RESEARCH 53.12(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Underwood, Kristen L.]的文章
[Rizzo, Donna M.]的文章
[Schroth, Andrew W.]的文章
百度学术
百度学术中相似的文章
[Underwood, Kristen L.]的文章
[Rizzo, Donna M.]的文章
[Schroth, Andrew W.]的文章
必应学术
必应学术中相似的文章
[Underwood, Kristen L.]的文章
[Rizzo, Donna M.]的文章
[Schroth, Andrew W.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。