GSTDTAP  > 气候变化
DOI10.1175/JCLI-D-17-0411.1
Predicting Monsoon Intraseasonal Precipitation using a Low-Order Nonlinear Stochastic Model
Chen, Nan1,2; Majda, Andrew J.1,2,3; Sabeerali, C. T.3; Ajayamohan, R. S.3
2018-06-01
发表期刊JOURNAL OF CLIMATE
ISSN0894-8755
EISSN1520-0442
出版年2018
卷号31期号:11页码:4403-4427
文章类型Article
语种英语
国家USA; U Arab Emirates
英文摘要

The authors assess the predictability of large-scale monsoon intraseasonal oscillations (MISOs) as measured by precipitation. An advanced nonlinear data analysis technique, nonlinear Laplacian spectral analysis (NLSA), is applied to the daily precipitation data, resulting in two spatial modes associated with the MISO. The large-scale MISO patterns are predicted in two steps. First, a physics-constrained low-order nonlinear stochastic model is developed to predict the highly intermittent time series of these two MISO modes. The model involves two observed MISO variables and two hidden variables that characterize the strong intermittency and random oscillations in the MISO time series. It is shown that the precipitation MISO indices can be skillfully predicted from 20 to 50 days in advance. Second, an effective and practical spatiotemporal reconstruction algorithm is designed, which overcomes the fundamental difficulty in most data decomposition techniques with lagged embedding that requires extra information in the future beyond the predicted range of the time series. The predicted spatiotemporal patterns often have comparable skill to the MISO indices. One of the main advantages of the proposed model is that a short (3 year) training period is sufficient to describe the essential characteristics of the MISO and retain skillful predictions. In addition, both model statistics and prediction skill indicate that outgoing longwave radiation is an accurate proxy for precipitation in describing the MISO. Notably, the length of the lagged embedding window used in NLSA is crucial in capturing the main features and assessing the predictability of MISOs.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000432465200001
WOS关键词LAPLACIAN SPECTRAL-ANALYSIS ; INDIAN-SUMMER MONSOON ; EXTENDED RANGE PREDICTION ; MADDEN-JULIAN OSCILLATION ; CLIMATE FORECAST SYSTEM ; INFORMATION-THEORY ; TIME-SERIES ; VARIABILITY ; RAINFALL ; CONVECTION
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
被引频次:17[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21084
专题气候变化
作者单位1.NYU, Courant Inst Math Sci, Dept Math, New York, NY 10003 USA;
2.NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10003 USA;
3.New York Univ Abu Dhabi, Ctr Prototype Climate Modeling, Abu Dhabi, U Arab Emirates
推荐引用方式
GB/T 7714
Chen, Nan,Majda, Andrew J.,Sabeerali, C. T.,et al. Predicting Monsoon Intraseasonal Precipitation using a Low-Order Nonlinear Stochastic Model[J]. JOURNAL OF CLIMATE,2018,31(11):4403-4427.
APA Chen, Nan,Majda, Andrew J.,Sabeerali, C. T.,&Ajayamohan, R. S..(2018).Predicting Monsoon Intraseasonal Precipitation using a Low-Order Nonlinear Stochastic Model.JOURNAL OF CLIMATE,31(11),4403-4427.
MLA Chen, Nan,et al."Predicting Monsoon Intraseasonal Precipitation using a Low-Order Nonlinear Stochastic Model".JOURNAL OF CLIMATE 31.11(2018):4403-4427.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Nan]的文章
[Majda, Andrew J.]的文章
[Sabeerali, C. T.]的文章
百度学术
百度学术中相似的文章
[Chen, Nan]的文章
[Majda, Andrew J.]的文章
[Sabeerali, C. T.]的文章
必应学术
必应学术中相似的文章
[Chen, Nan]的文章
[Majda, Andrew J.]的文章
[Sabeerali, C. T.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。