GSTDTAP  > 资源环境科学
DOI10.1002/2016WR020168
Smoothing-based compressed state Kalman filter for joint state-parameter estimation: Applications in reservoir characterization and CO2 storage monitoring
Li, Y. J.1; Kokkinaki, Amalia2; Darve, Eric F.3,4; Kitanidis, Peter K.1,3
2017-08-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2017
卷号53期号:8
文章类型Article
语种英语
国家USA
英文摘要

The operation of most engineered hydrogeological systems relies on simulating physical processes using numerical models with uncertain parameters and initial conditions. Predictions by such uncertain models can be greatly improved by Kalman-filter techniques that sequentially assimilate monitoring data. Each assimilation constitutes a nonlinear optimization, which is solved by linearizing an objective function about the model prediction and applying a linear correction to this prediction. However, if model parameters and initial conditions are uncertain, the optimization problem becomes strongly nonlinear and a linear correction may yield unphysical results. In this paper, we investigate the utility of one-step ahead smoothing, a variant of the traditional filtering process, to eliminate nonphysical results and reduce estimation artifacts caused by nonlinearities. We present the smoothing-based compressed state Kalman filter (sCSKF), an algorithm that combines one step ahead smoothing, in which current observations are used to correct the state and parameters one step back in time, with a nonensemble covariance compression scheme, that reduces the computational cost by efficiently exploring the high-dimensional state and parameter space. Numerical experiments show that when model parameters are uncertain and the states exhibit hyperbolic behavior with sharp fronts, as in CO2 storage applications, one-step ahead smoothing reduces overshooting errors and, by design, gives physically consistent state and parameter estimates. We compared sCSKF with commonly used data assimilation methods and showed that for the same computational cost, combining one step ahead smoothing and nonensemble compression is advantageous for real-time characterization and monitoring of large-scale hydrogeological systems with sharp moving fronts.


Plain Language Summary Geologic CO2 storage is a promising technology to reduce the CO2 in the atmosphere by injecting them into the deep saline reservoir for permanent storage. To assure safe operations and effective containment of CO2, numerical models are developed to accurately predict the CO2 behaviors underground in order to make informed decisions, such as adjusting the volume and rate of injection to prevent fracturing the surrounding rock. However, because of our limited knowledge about the reservoir properties, often the numerical model is highly uncertain. Statistical techniques like Kalman filtering use sensor data to reduce the prediction uncertainty in the numerical model by correcting the unknown reservoir properties recursively in time when data becomes available. The amount of correction is determined by solving an optimization problem. However, it is computationally intractable to find feasible solutions to such problems if reservoir properties to be estimated are high dimensional. Moreover, when the optimization problem is nonlinear, Kalman-type approaches can give unphysical results. By improving the way information is extracted from the sensor data, we present a new Kalman-type approach that can solve this optimization problem with better accuracy and reduced uncertainty.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000411202000044
WOS关键词DATA ASSIMILATION ; ENSEMBLE ; MODELS
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21012
专题资源环境科学
作者单位1.Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA;
2.Univ San Francisco, Dept Environm Sci, San Francisco, CA 94117 USA;
3.Stanford Univ, Jen Hsun Huang Engn Ctr, Inst Computat & Math Engn, Stanford, CA 94305 USA;
4.Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
推荐引用方式
GB/T 7714
Li, Y. J.,Kokkinaki, Amalia,Darve, Eric F.,et al. Smoothing-based compressed state Kalman filter for joint state-parameter estimation: Applications in reservoir characterization and CO2 storage monitoring[J]. WATER RESOURCES RESEARCH,2017,53(8).
APA Li, Y. J.,Kokkinaki, Amalia,Darve, Eric F.,&Kitanidis, Peter K..(2017).Smoothing-based compressed state Kalman filter for joint state-parameter estimation: Applications in reservoir characterization and CO2 storage monitoring.WATER RESOURCES RESEARCH,53(8).
MLA Li, Y. J.,et al."Smoothing-based compressed state Kalman filter for joint state-parameter estimation: Applications in reservoir characterization and CO2 storage monitoring".WATER RESOURCES RESEARCH 53.8(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Y. J.]的文章
[Kokkinaki, Amalia]的文章
[Darve, Eric F.]的文章
百度学术
百度学术中相似的文章
[Li, Y. J.]的文章
[Kokkinaki, Amalia]的文章
[Darve, Eric F.]的文章
必应学术
必应学术中相似的文章
[Li, Y. J.]的文章
[Kokkinaki, Amalia]的文章
[Darve, Eric F.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。