GSTDTAP  > 资源环境科学
DOI10.1002/2017WR021884
A Reduced-Order Successive Linear Estimator for Geostatistical Inversion and its Application in Hydraulic Tomography
Zha, Yuanyuan1; Yeh, Tian-Chyi J.2,3; Illman, Walter A.4; Zeng, Wenzhi1; Zhang, Yonggen5; Sun, Fangqiang6; Shi, Liangsheng1
2018-03-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2018
卷号54期号:3页码:1616-1632
文章类型Article
语种英语
国家Peoples R China; USA; Canada
英文摘要

Hydraulic tomography (HT) is a recently developed technology for characterizing high-resolution, site-specific heterogeneity using hydraulic data (n(d)) from a series of cross-hole pumping tests. To properly account for the subsurface heterogeneity and to flexibly incorporate additional information, geostatistical inverse models, which permit a large number of spatially correlated unknowns (n(y)), are frequently used to interpret the collected data. However, the memory storage requirements for the covariance of the unknowns (n(y) x n(y)) in these models are prodigious for large-scale 3-D problems. Moreover, the sensitivity evaluation is often computationally intensive using traditional difference method (n(y) forward runs). Although employment of the adjoint method can reduce the cost to n(d) forward runs, the adjoint model requires intrusive coding effort. In order to resolve these issues, this paper presents a Reduced-Order Successive Linear Estimator (ROSLE) for analyzing HT data. This new estimator approximates the covariance of the unknowns using Karhunen-Loeve Expansion (KLE) truncated to n(kl) order, and it calculates the directional sensitivities (in the directions of n(kl) eigenvectors) to form the covariance and cross-covariance used in the Successive Linear Estimator (SLE). In addition, the covariance of unknowns is updated every iteration by updating the eigenvalues and eigenfunctions. The computational advantages of the proposed algorithm are demonstrated through numerical experiments and a 3-D transient HT analysis of data from a highly heterogeneous field site.


英文关键词hydraulic tomography geostatistical inverse modeling Bayesian inversion Karhunen-Loeve Expansion
领域资源环境
收录类别SCI-E
WOS记录号WOS:000430364900012
WOS关键词POROUS-MEDIA ; SANDBOX EXPERIMENTS ; SUBSURFACE FLOW ; AQUIFER ; TRANSPORT ; HETEROGENEITY ; SCALE ; HEAD ; INFORMATION ; VALIDATION
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/20440
专题资源环境科学
作者单位1.Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan, Hubei, Peoples R China;
2.Univ Arizona, Dept Hydrol & Atmospher Sci, Tucson, AZ USA;
3.Tianjin Normal Univ, Key Lab Water Environm & Resources, Tianjin, Peoples R China;
4.Univ Waterloo, Dept Earth & Environm Sci, Waterloo, ON, Canada;
5.Tianjin Univ, Inst Surface Earth Syst Sci, Tianjin, Peoples R China;
6.China Geol Survey, Key Lab Groundwater & Ecol Arid & Semiarid Area, Xian, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Zha, Yuanyuan,Yeh, Tian-Chyi J.,Illman, Walter A.,et al. A Reduced-Order Successive Linear Estimator for Geostatistical Inversion and its Application in Hydraulic Tomography[J]. WATER RESOURCES RESEARCH,2018,54(3):1616-1632.
APA Zha, Yuanyuan.,Yeh, Tian-Chyi J..,Illman, Walter A..,Zeng, Wenzhi.,Zhang, Yonggen.,...&Shi, Liangsheng.(2018).A Reduced-Order Successive Linear Estimator for Geostatistical Inversion and its Application in Hydraulic Tomography.WATER RESOURCES RESEARCH,54(3),1616-1632.
MLA Zha, Yuanyuan,et al."A Reduced-Order Successive Linear Estimator for Geostatistical Inversion and its Application in Hydraulic Tomography".WATER RESOURCES RESEARCH 54.3(2018):1616-1632.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zha, Yuanyuan]的文章
[Yeh, Tian-Chyi J.]的文章
[Illman, Walter A.]的文章
百度学术
百度学术中相似的文章
[Zha, Yuanyuan]的文章
[Yeh, Tian-Chyi J.]的文章
[Illman, Walter A.]的文章
必应学术
必应学术中相似的文章
[Zha, Yuanyuan]的文章
[Yeh, Tian-Chyi J.]的文章
[Illman, Walter A.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。