Global S&T Development Trend Analysis Platform of Resources and Environment
| DOI | 10.1126/science.aau6249 |
| Human-level performance in 3D multiplayer games with population-based reinforcement learning | |
| Jaderberg, Max; Czarnecki, Wojciech M.; Dunning, Iain; Marris, Luke; Lever, Guy; Castaneda, Antonio Garcia; Beattie, Charles; Rabinowitz, Neil C.; Morcos, Ari S.; Ruderman, Avraham; Sonnerat, Nicolas; Green, Tim; Deason, Louise; Leibo, Joel Z.; Silver, David; Hassabis, Demis; Kavukcuoglu, Koray; Graepel, Thore | |
| 2019-05-31 | |
| 发表期刊 | SCIENCE
![]() |
| ISSN | 0036-8075 |
| EISSN | 1095-9203 |
| 出版年 | 2019 |
| 卷号 | 364期号:6443页码:859-+ |
| 文章类型 | Article |
| 语种 | 英语 |
| 国家 | England |
| 英文摘要 | Reinforcement learning (RL) has shown great success in increasingly complex single-agent environments and two-player turn-based games. However, the real world contains multiple agents, each learning and acting independently to cooperate and compete with other agents. We used a tournament-style evaluation to demonstrate that an agent can achieve human-level performance in a three-dimensional multiplayer first-person video game, Quake III Arena in Capture the Flag mode, using only pixels and game points scored as input. We used a two-tier optimization process in which a population of independent RL agents are trained concurrently from thousands of parallel matches on randomly generated environments. Each agent learns its own internal reward signal and rich representation of the world. These results indicate the great potential of multiagent reinforcement learning for artificial intelligence research. |
| 领域 | 地球科学 ; 气候变化 ; 资源环境 |
| 收录类别 | SCI-E ; SSCI |
| WOS记录号 | WOS:000469887900056 |
| WOS关键词 | TIME ; GO |
| WOS类目 | Multidisciplinary Sciences |
| WOS研究方向 | Science & Technology - Other Topics |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/201527 |
| 专题 | 地球科学 资源环境科学 气候变化 |
| 作者单位 | DeepMind, London, England |
| 推荐引用方式 GB/T 7714 | Jaderberg, Max,Czarnecki, Wojciech M.,Dunning, Iain,et al. Human-level performance in 3D multiplayer games with population-based reinforcement learning[J]. SCIENCE,2019,364(6443):859-+. |
| APA | Jaderberg, Max.,Czarnecki, Wojciech M..,Dunning, Iain.,Marris, Luke.,Lever, Guy.,...&Graepel, Thore.(2019).Human-level performance in 3D multiplayer games with population-based reinforcement learning.SCIENCE,364(6443),859-+. |
| MLA | Jaderberg, Max,et al."Human-level performance in 3D multiplayer games with population-based reinforcement learning".SCIENCE 364.6443(2019):859-+. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论