GSTDTAP  > 资源环境科学
DOI10.1029/2017WR022216
Spatial Patterns of Water Age: Using Young Water Fractions to Improve the Characterization of Transit Times in Contrasting Catchments
Lutz, S. R.1; Krieg, R.1; Mueller, C.1; Zink, M.2,3; Knoeller, K.1; Samaniego, L.2; Merz, R.1
2018-07-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2018
卷号54期号:7页码:4767-4784
文章类型Article
语种英语
国家Germany; England
英文摘要

Transit time distributions (TTDs) are crucial descriptors of flow and transport processes in catchments, which can be determined from stable water isotope data. Recently, the young water fraction (F-yw) has been introduced as an additional metric derivable from seasonal isotope cycles. In this study, we calculated F-yw and TTDs using monthly isotope data from 24 contrasting subcatchments in a mesoscale catchment (3,300km(2)) in Germany. F-yw ranged from 0.01 to 0.27 (mean=0.11) and was smallest in mountainous catchments. Assuming gamma-shaped TTDs, we determined stationary TTDs with the convolution integral method for each subcatchment. The convolution integral was first calibrated against the isotope data only (i.e., traditional calibration) and, second, using a multiobjective calibration with the F-yw estimates as an additional constraint. This yielded largely differing TTD parameters even for neighboring catchments, with F-yw values below 0.1 generally involving a delayed peak in TTDs (i.e., gamma-distribution shape parameter > 1). While the traditional calibration resulted in large uncertainties in TTD parameters, these uncertainties were reduced with the multiobjective calibration, thereby improving the assessment of mean transit times (2 years on average, ranging between 9.6 months and 5.6 years). This highlights the need for uncertainty assessment when using simple isotope models and shows that the traditional calibration might not yield an optimum solution in that it may give a TTD nonconsistent with F-yw. Given the robustness of F-yw estimates, isotope models should thus aim at accurately describing both F-yw and measured isotope data in order to improve the description of flow and transport in catchments.


Plain Language Summary Information on the age of river water is crucial for assessing the vulnerability of rivers to weather extremes and pollution. The age of river water is defined as the time that water has spent underground after rainfall infiltration and before ending up in the river. The probability distribution of river water age can be determined using environmental tracers, which are tracers that naturally occur in the system such as stable water isotopes. In this study, we used isotope models to analyze time series of stable water isotopes in rainfall and streamwater measured in 24 subcatchments of the Bode catchment in central Germany. We found that the mean age of river water ranges between 9.6 months and 5.6 years depending on catchment characteristics such as climate and soil type. Moreover, river water with an age of below 2 to 3 months accounts for between 1% and 27% of the entire age distribution. We demonstrate how to use this information on young river water to constrain other metrics such as the mean water age. We suggest that this method is valuable for future studies using environmental tracers and models to determine water age in catchments.


英文关键词Transit time distribution young water fraction spatial patterns isotope modeling
领域资源环境
收录类别SCI-E
WOS记录号WOS:000442502100033
WOS关键词STABLE-ISOTOPES ; RESIDENCE TIME ; ENVIRONMENTAL SYSTEMS ; FLOW PATHS ; DYNAMICS ; MODEL ; DISTRIBUTIONS ; STREAMFLOW ; TRACERS ; FOREST
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/20121
专题资源环境科学
作者单位1.UFZ Helmholtz Ctr Environm Res, Dept Catchment Hydrol, Halle, Saale, Germany;
2.UFZ Helmholtz Ctr Environm Res, Dept Computat Hydrosyst, Leipzig, Germany;
3.European Ctr Medium Range Weather Forecasts, Reading, Berks, England
推荐引用方式
GB/T 7714
Lutz, S. R.,Krieg, R.,Mueller, C.,et al. Spatial Patterns of Water Age: Using Young Water Fractions to Improve the Characterization of Transit Times in Contrasting Catchments[J]. WATER RESOURCES RESEARCH,2018,54(7):4767-4784.
APA Lutz, S. R..,Krieg, R..,Mueller, C..,Zink, M..,Knoeller, K..,...&Merz, R..(2018).Spatial Patterns of Water Age: Using Young Water Fractions to Improve the Characterization of Transit Times in Contrasting Catchments.WATER RESOURCES RESEARCH,54(7),4767-4784.
MLA Lutz, S. R.,et al."Spatial Patterns of Water Age: Using Young Water Fractions to Improve the Characterization of Transit Times in Contrasting Catchments".WATER RESOURCES RESEARCH 54.7(2018):4767-4784.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lutz, S. R.]的文章
[Krieg, R.]的文章
[Mueller, C.]的文章
百度学术
百度学术中相似的文章
[Lutz, S. R.]的文章
[Krieg, R.]的文章
[Mueller, C.]的文章
必应学术
必应学术中相似的文章
[Lutz, S. R.]的文章
[Krieg, R.]的文章
[Mueller, C.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。