GSTDTAP  > 资源环境科学
DOI10.1029/2017WR021357
Bridging Thermal Infrared Sensing and Physically-Based Evapotranspiration Modeling: From Theoretical Implementation to Validation Across an Aridity Gradient in Australian Ecosystems
Mallick, Kaniska1; Toivonen, Erika1,2,3,4; Trebs, Ivonne1; Boegh, Eva5,6; Cleverly, James7; Eamus, Derek7; Koivusalo, Harri2; Drewry, Darren8,9; Arndt, Stefan K.10; Griebel, Anne10; Beringer, Jason11; Garcia, Monica12,13
2018-05-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2018
卷号54期号:5页码:3409-3435
文章类型Article
语种英语
国家Luxembourg; Finland; Denmark; Australia; USA
英文摘要

Thermal infrared sensing of evapotranspiration (E) through surface energy balance (SEB) models is challenging due to uncertainties in determining the aerodynamic conductance (g(A)) and due to inequalities between radiometric (T-R) and aerodynamic temperatures (T-0). We evaluated a novel analytical model, the Surface Temperature Initiated Closure (STIC1.2), that physically integrates T-R observations into a combined Penman-Monteith Shuttleworth-Wallace (PM-SW) framework for directly estimating E, and overcoming the uncertainties associated with T0 and gA determination. An evaluation of STIC1.2 against high temporal frequency SEB flux measurements across an aridity gradient in Australia revealed a systematic error of 10-52% in E from mesic to arid ecosystem, and low systematic error in sensible heat fluxes (H) (12-25%) in all ecosystems. Uncertainty in TR versus moisture availability relationship, stationarity assumption in surface emissivity, and SEB closure corrections in E were predominantly responsible for systematic E errors in arid and semi-arid ecosystems. A discrete correlation (r) of the model errors with observed soil moisture variance (r = 0.33-0.43), evaporative index (r = 0.77-0.90), and climatological dryness (r = 0.60-0.77) explained a strong association between ecohydrological extremes and T-R in determining the error structure of STIC1.2 predicted fluxes. Being independent of any leaf-scale biophysical parameterization, the model might be an important value addition in working group (WG2) of the Australian Energy and Water Exchange (OzEWEX) research initiative which focuses on observations to evaluate and compare biophysical models of energy and water cycle components.


Plain Language Summary Evapotranspiration modeling and mapping in arid and semi-arid ecosystems are uncertain due to empirical approximation of surface and atmospheric conductances. Here we demonstrate the performance of a fully analytical model which is independent of any leaf-scale empirical parameterization of the conductances and can be potentially used for continental scale mapping of ecosystem water use as well as water stress using thermal remote sensing satellite data.d


领域资源环境
收录类别SCI-E
WOS记录号WOS:000442351300011
WOS关键词RADIOMETRIC SURFACE-TEMPERATURE ; ENERGY-BALANCE CLOSURE ; HEAT-FLUX ; MEDITERRANEAN DRYLANDS ; AERODYNAMIC RESISTANCE ; 2-SOURCE PERSPECTIVE ; PRIESTLEY-TAYLOR ; WATER-RESOURCES ; LATENT-HEAT ; EVAPORATION
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/19993
专题资源环境科学
作者单位1.Luxembourg Inst Sci & Technol, Dept Environm Res & Innovat, Belvaux, Luxembourg;
2.Aalto Univ, Dept Built Environm, Sch Engn, Espoo, Finland;
3.Finnish Meteorol Inst, Climate Syst Res, Helsinki, Finland;
4.Univ Helsinki, Dept Phys, Helsinki, Finland;
5.Roskilde Univ, Dept Sci & Environm, Roskilde, Denmark;
6.Danish Agcy Data Supply & Efficiency, Copenhagen, Denmark;
7.Univ Technol Sydney, Sch Life Sci, Terr Ecohydrol Res Grp, Broadway, NSW, Australia;
8.CALTECH, Jet Prop Lab, Pasadena, CA USA;
9.Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA;
10.Univ Melbourne, Sch Ecosyst & Forest Sci, Melbourne, Vic, Australia;
11.Univ Western Australia, Sch Agr & Environm, Crawley, WA, Australia;
12.Tech Univ Denmark, Dept Environm Engn, Lyngby, Denmark;
13.Columbia Univ, Int Res Inst Climate & Soc, Earth Inst, Palisades, NY USA
推荐引用方式
GB/T 7714
Mallick, Kaniska,Toivonen, Erika,Trebs, Ivonne,et al. Bridging Thermal Infrared Sensing and Physically-Based Evapotranspiration Modeling: From Theoretical Implementation to Validation Across an Aridity Gradient in Australian Ecosystems[J]. WATER RESOURCES RESEARCH,2018,54(5):3409-3435.
APA Mallick, Kaniska.,Toivonen, Erika.,Trebs, Ivonne.,Boegh, Eva.,Cleverly, James.,...&Garcia, Monica.(2018).Bridging Thermal Infrared Sensing and Physically-Based Evapotranspiration Modeling: From Theoretical Implementation to Validation Across an Aridity Gradient in Australian Ecosystems.WATER RESOURCES RESEARCH,54(5),3409-3435.
MLA Mallick, Kaniska,et al."Bridging Thermal Infrared Sensing and Physically-Based Evapotranspiration Modeling: From Theoretical Implementation to Validation Across an Aridity Gradient in Australian Ecosystems".WATER RESOURCES RESEARCH 54.5(2018):3409-3435.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mallick, Kaniska]的文章
[Toivonen, Erika]的文章
[Trebs, Ivonne]的文章
百度学术
百度学术中相似的文章
[Mallick, Kaniska]的文章
[Toivonen, Erika]的文章
[Trebs, Ivonne]的文章
必应学术
必应学术中相似的文章
[Mallick, Kaniska]的文章
[Toivonen, Erika]的文章
[Trebs, Ivonne]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。