GSTDTAP  > 地球科学
DOI10.1016/j.atmosres.2019.05.010
Application of machine learning to large hail prediction - The importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5
Czernecki, Bartosz1; Taszarek, Mateusz1; Marosz, Michal2; Polrolniczak, Marek1; Kolendowicz, Leszek1; Wyszogrodzki, Andrzej3; Szturc, Jan3
2019-10-01
发表期刊ATMOSPHERIC RESEARCH
ISSN0169-8095
EISSN1873-2895
出版年2019
卷号227页码:249-262
文章类型Article
语种英语
国家Poland
英文摘要

This study presents a concept for coupling remote sensing data and environmental variables with machine learning techniques for the prediction of large hail events. In particular, we want to address the following question: How would one improve the performance of large hail warnings / forecasts if thermodynamic and kinematic parameters derived from a numerical weather prediction model are combined with real-time remote sensing data? For this purpose, POLRAD radar reflectivity, EUCLID lightning detection data, and convective indices calculated from the ERAS reanalysis are combined and then compared with large hail reports from Poland (2008-2017). The data fusion of multiple sources, coupled with the machine learning approach, makes it possible to greatly improve the robustness of large hail prediction compared to any single product commonly used in operational forecasting. This is especially noticeable with the reduced number of false alarms. Although the created machine learning models are mainly driven by radar reflectivity, composite thermodynamic and kinematic indices such as Hail Size Index (HSI), Significant Hail Parameter (SHIP), Large Hail Parameter (LGHAIL), and WMAXSHEAR provide an added value to a model's performance. The accuracy achieved by a random forest model brings with it encouraging prospects for future research with respect to operational forecasters (who may fill in the gaps within NWP-derived data with remotely sensed measurement) and climatological studies that aim to investigate past and future changes in severe weather occurrences.


英文关键词Large hail Forecasting Thunderstorm Machine learning ERAS EUCLID ESWD
领域地球科学
收录类别SCI-E
WOS记录号WOS:000472688500021
WOS关键词SEVERE-THUNDERSTORM ; PROXIMITY SOUNDINGS ; THERMODYNAMIC CONDITIONS ; SPATIAL-DISTRIBUTION ; SEVERE STORMS ; CLIMATOLOGY ; ENVIRONMENTS ; EUROPE ; HAILSTORMS ; TORNADO
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/187183
专题地球科学
作者单位1.Adam Mickiewicz Univ, Inst Phys Geog & Environm Planning, Dept Climatol, Poznan, Poland;
2.Univ Gdansk, Dept Meteorol & Climatol, Gdansk, Poland;
3.Natl Res Inst, Inst Meteorol & Water Management, Warsaw, Poland
推荐引用方式
GB/T 7714
Czernecki, Bartosz,Taszarek, Mateusz,Marosz, Michal,et al. Application of machine learning to large hail prediction - The importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5[J]. ATMOSPHERIC RESEARCH,2019,227:249-262.
APA Czernecki, Bartosz.,Taszarek, Mateusz.,Marosz, Michal.,Polrolniczak, Marek.,Kolendowicz, Leszek.,...&Szturc, Jan.(2019).Application of machine learning to large hail prediction - The importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5.ATMOSPHERIC RESEARCH,227,249-262.
MLA Czernecki, Bartosz,et al."Application of machine learning to large hail prediction - The importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5".ATMOSPHERIC RESEARCH 227(2019):249-262.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Czernecki, Bartosz]的文章
[Taszarek, Mateusz]的文章
[Marosz, Michal]的文章
百度学术
百度学术中相似的文章
[Czernecki, Bartosz]的文章
[Taszarek, Mateusz]的文章
[Marosz, Michal]的文章
必应学术
必应学术中相似的文章
[Czernecki, Bartosz]的文章
[Taszarek, Mateusz]的文章
[Marosz, Michal]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。