GSTDTAP  > 地球科学
DOI10.1175/JAS-D-18-0351.1
Probing the Response of Tropical Deep Convection to Aerosol Perturbations Using Idealized Cloud-Resolving Simulations with Parameterized Large-Scale Dynamics
Anber, Usama M.1; Wang, Shuguang2; Gentine, Pierre3; Jensen, Michael P.1
2019-09-01
发表期刊JOURNAL OF THE ATMOSPHERIC SCIENCES
ISSN0022-4928
EISSN1520-0469
出版年2019
卷号76期号:9页码:2885-2897
文章类型Article
语种英语
国家USA
英文摘要

A framework is introduced to investigate the indirect effect of aerosol loading on tropical deep convection using three-dimensional limited-domain idealized cloud-system-resolving model simulations coupled with large-scale dynamics over fixed sea surface temperature. The large-scale circulation is parameterized using the spectral weak temperature gradient (WTG) approximation that utilizes the dominant balance between adiabatic cooling and diabatic heating in the tropics. The aerosol loading effect is examined by varying the number of cloud condensation nuclei (CCN) available to form cloud droplets in the two-moment bulk microphysics scheme over a wide range of environments from 30 to 5000 cm(-3). The radiative heating is held at a constant prescribed rate in order to isolate the microphysical effects. Analyses are performed over the period after equilibrium is achieved between convection and the large-scale environment. Mean precipitation is found to decrease modestly and monotonically when the aerosol number concentration increases as convection gets weaker, despite the increase in cloud liquid water in the warm-rain region and ice crystals aloft. This reduction is traced down to the reduction in surface enthalpy fluxes as an energy source to the atmospheric column induced by the coupling of the large-scale motion, though the gross moist stability remains constant. Increasing CCN concentration leads to 1) a cooler free troposphere because of a reduction in the diabatic heating and 2) a warmer boundary layer because of suppressed evaporative cooling. This dipole temperature structure is associated with anomalously descending large-scale vertical motion above the boundary layer and ascending motion at lower levels. Sensitivity tests suggest that changes in convection and mean precipitation are unlikely to be caused by the impact of aerosols on cloud droplets and microphysical properties but rather by accounting for the feedback from convective adjustment with the large-scale dynamics. Furthermore, a simple scaling argument is derived based on the vertically integrated moist static energy budget, which enables estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometeors and microphysical properties is also examined, and it is consistent with the macrophysical picture.


英文关键词Deep convection Convective-scale processes
领域地球科学
收录类别SCI-E
WOS记录号WOS:000484501400001
WOS关键词ATMOSPHERIC CONVECTION ; PART II ; MICROPHYSICS PARAMETERIZATION ; VERTICAL DIFFUSION ; MODEL SIMULATIONS ; PRECIPITATION ; TEMPERATURE ; LAYER ; CONDENSATION ; EQUILIBRIUM
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/186803
专题地球科学
作者单位1.Brookhaven Natl Lab, Environm & Climate Sci Dept, Upton, NY 11973 USA;
2.Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA;
3.Columbia Univ, Dept Earth & Environm Engn, New York, NY USA
推荐引用方式
GB/T 7714
Anber, Usama M.,Wang, Shuguang,Gentine, Pierre,et al. Probing the Response of Tropical Deep Convection to Aerosol Perturbations Using Idealized Cloud-Resolving Simulations with Parameterized Large-Scale Dynamics[J]. JOURNAL OF THE ATMOSPHERIC SCIENCES,2019,76(9):2885-2897.
APA Anber, Usama M.,Wang, Shuguang,Gentine, Pierre,&Jensen, Michael P..(2019).Probing the Response of Tropical Deep Convection to Aerosol Perturbations Using Idealized Cloud-Resolving Simulations with Parameterized Large-Scale Dynamics.JOURNAL OF THE ATMOSPHERIC SCIENCES,76(9),2885-2897.
MLA Anber, Usama M.,et al."Probing the Response of Tropical Deep Convection to Aerosol Perturbations Using Idealized Cloud-Resolving Simulations with Parameterized Large-Scale Dynamics".JOURNAL OF THE ATMOSPHERIC SCIENCES 76.9(2019):2885-2897.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Anber, Usama M.]的文章
[Wang, Shuguang]的文章
[Gentine, Pierre]的文章
百度学术
百度学术中相似的文章
[Anber, Usama M.]的文章
[Wang, Shuguang]的文章
[Gentine, Pierre]的文章
必应学术
必应学术中相似的文章
[Anber, Usama M.]的文章
[Wang, Shuguang]的文章
[Gentine, Pierre]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。