Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1002/joc.6255 |
A novel approach for modelling pattern and spatial dependence structures between climate variables by combining mixture models with copula models | |
Khan, Firdos1,2; Spoeck, Gunter2; Pilz, Juergen2 | |
2019-08-16 | |
发表期刊 | INTERNATIONAL JOURNAL OF CLIMATOLOGY
![]() |
ISSN | 0899-8418 |
EISSN | 1097-0088 |
出版年 | 2019 |
文章类型 | Article;Early Access |
语种 | 英语 |
国家 | Pakistan; Austria |
英文摘要 | Spatiotemporal dependence structures play a pivotal role in understanding the meteorological characteristics of a basin or subbasin. This further affects the hydrological conditions and, consequently, will provide misleading results if these structures are not taken into account properly. In this study, we modelled the spatial dependence structure of three climate variables, maximum and minimum temperature and precipitation, throughout the Monsoon-dominated zone of Pakistan. For temperature, six meteorological stations have been considered, for precipitation we used the results of four meteorological stations. For modelling the dependence structure between temperature and precipitation at multiple sites, we utilized C-Vine, D-Vine and student t-copula models. For temperature, multivariate mixture normal distributions, and for precipitation, the gamma distribution, have been used as marginals under the copula models. The models were calibrated by utilizing the 20 years daily data from 1981 to 2000, and for validation, we used the data for 10-year period from 2001 to 2010. The simulations were performed for each variable separately, conditioned on spatial neighbours. A comparison was made between the different copula models, on the basis of observational and simulated patterns and spatial dependence structures, the performance was evaluated for the validation period. The results show that all copula models performed well; however, there are subtle differences between them. The copula models captured the patterns and spatial dependence structures between climate variables, however, the t-copula showed poor performance in reproducing the dependence structure with respect to magnitude. It was observed that important statistics of observed data have been closely approximated except a few maximum values for maximum temperature and minimum values for minimum temperature. Probability density functions of simulated data follow closely the pattern of observational data. These methods can be combined with statistical downscaling models to improve their performance, particularly in modelling the dependence structure between climate variables at multiple sites. |
英文关键词 | copula model C-Vine D-Vine EM algorithm mixture models monsoon spatial dependence structure |
领域 | 气候变化 |
收录类别 | SCI-E |
WOS记录号 | WOS:000481388200001 |
WOS关键词 | PRECIPITATION ; DECOMPOSITION ; RISK |
WOS类目 | Meteorology & Atmospheric Sciences |
WOS研究方向 | Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/186084 |
专题 | 气候变化 |
作者单位 | 1.Natl Univ Sci & Technol, Sch Nat Sci, Islamabad 44000, Pakistan; 2.Alpen Adria Univ, Inst Stat, Klagenfurt, Austria |
推荐引用方式 GB/T 7714 | Khan, Firdos,Spoeck, Gunter,Pilz, Juergen. A novel approach for modelling pattern and spatial dependence structures between climate variables by combining mixture models with copula models[J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY,2019. |
APA | Khan, Firdos,Spoeck, Gunter,&Pilz, Juergen.(2019).A novel approach for modelling pattern and spatial dependence structures between climate variables by combining mixture models with copula models.INTERNATIONAL JOURNAL OF CLIMATOLOGY. |
MLA | Khan, Firdos,et al."A novel approach for modelling pattern and spatial dependence structures between climate variables by combining mixture models with copula models".INTERNATIONAL JOURNAL OF CLIMATOLOGY (2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论