GSTDTAP  > 地球科学
DOI10.5194/acp-19-7255-2019
Low-volatility compounds contribute significantly to isoprene secondary organic aerosol (SOA) under high-NOx conditions
Schwantes, Rebecca H.1,5; Charan, Sophia M.2; Bates, Kelvin H.2,6; Huang, Yuanlong1; Nguyen, Tran B.3; Mai, Huajun1; Kong, Weimeng2; Flagan, Richard C.2; Seinfeld, John H.2,4
2019-06-03
发表期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
ISSN1680-7316
EISSN1680-7324
出版年2019
卷号19期号:11页码:7255-7278
文章类型Article
语种英语
国家USA
英文摘要

Recent advances in our knowledge of the gas-phase oxidation of isoprene, the impact of chamber walls on secondary organic aerosol (SOA) mass yields, and aerosol measurement analysis techniques warrant reevaluating SOA yields from isoprene. In particular, SOA from isoprene oxidation under high-NOx conditions forms via two major pathways: (1) low-volatility nitrates and dinitrates (LV pathway) and (2) hydroxymethyl-methyl-alpha-lactone (HMML) reaction on a surface or the condensed phase of particles to form 2-methyl glyceric acid and its oligomers (2MGA pathway). These SOA production pathways respond differently to reaction conditions. Past chamber experiments generated SOA with varying contributions from these two unique pathways, leading to results that are difficult to interpret. This study examines the SOA yields from these two pathways independently, which improves the interpretation of previous results and provides further understanding of the relevance of chamber SOA yields to the atmosphere and regional or global modeling. Results suggest that low-volatility nitrates and dinitrates produce significantly more aerosol than previously thought; the experimentally measured SOA mass yield from the LV pathway is similar to 0.15. Sufficient seed surface area at the start of the reaction is needed to limit the effects of vapor wall losses of low-volatility compounds and accurately measure the complete SOA mass yield. Under dry conditions, substantial amounts of SOA are formed from HMML ring-opening reactions with inorganic ions and HMML organic oligomerization processes. However, the lactone organic oligomerization reactions are suppressed under more atmospherically relevant humidity levels, where hydration of the lactone is more competitive. This limits the SOA formation potential from the 2MGA pathway to HMML ring-opening reactions with water or inorganic ions under typical atmospheric conditions. The isoprene SOA mass yield from the LV pathway measured in this work is significantly higher than previous studies have reported, suggesting that low-volatility compounds such as organic nitrates and dinitrates may contribute to isoprene SOA under high-NOx conditions significantly more than previously thought and thus deserve continued study.


领域地球科学
收录类别SCI-E
WOS记录号WOS:000470245600002
WOS关键词PURE COMPONENT PROPERTIES ; SOUTHEAST UNITED-STATES ; TROPOSPHERIC DEGRADATION ; 2-METHYLGLYCERIC ACID ; RELATIVE-HUMIDITY ; EPOXIDE FORMATION ; ATMOSPHERIC FATE ; WALL DEPOSITION ; PHASE MECHANISM ; REACTIVE UPTAKE
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/183994
专题地球科学
作者单位1.CALTECH, Div Geol & Planetary Sci, 1200 East Calif Blvd, Pasadena, CA 91125 USA;
2.CALTECH, Div Chem & Chem Engn, 1200 East Calif Blvd, Pasadena, CA 91125 USA;
3.Univ Calif Davis, Dept Environm Toxicol, Davis, CA 95616 USA;
4.CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA;
5.Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA;
6.Harvard Univ, Fac Arts & Sci, Cambridge, MA 02138 USA
推荐引用方式
GB/T 7714
Schwantes, Rebecca H.,Charan, Sophia M.,Bates, Kelvin H.,et al. Low-volatility compounds contribute significantly to isoprene secondary organic aerosol (SOA) under high-NOx conditions[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2019,19(11):7255-7278.
APA Schwantes, Rebecca H..,Charan, Sophia M..,Bates, Kelvin H..,Huang, Yuanlong.,Nguyen, Tran B..,...&Seinfeld, John H..(2019).Low-volatility compounds contribute significantly to isoprene secondary organic aerosol (SOA) under high-NOx conditions.ATMOSPHERIC CHEMISTRY AND PHYSICS,19(11),7255-7278.
MLA Schwantes, Rebecca H.,et al."Low-volatility compounds contribute significantly to isoprene secondary organic aerosol (SOA) under high-NOx conditions".ATMOSPHERIC CHEMISTRY AND PHYSICS 19.11(2019):7255-7278.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Schwantes, Rebecca H.]的文章
[Charan, Sophia M.]的文章
[Bates, Kelvin H.]的文章
百度学术
百度学术中相似的文章
[Schwantes, Rebecca H.]的文章
[Charan, Sophia M.]的文章
[Bates, Kelvin H.]的文章
必应学术
必应学术中相似的文章
[Schwantes, Rebecca H.]的文章
[Charan, Sophia M.]的文章
[Bates, Kelvin H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。