GSTDTAP  > 资源环境科学
DOI10.1029/2018WR023254
Flow Prediction in Ungauged Catchments Using Probabilistic Random Forests Regionalization and New Statistical Adequacy Tests
Prieto, Cristina1,2,3; Le Vine, Nataliya2,4; Kavetski, Dmitri5; Garcia, Eduardo1; Medina, Raul1
2019-05-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2019
卷号55期号:5页码:4364-4392
文章类型Article
语种英语
国家Spain; England; USA; Australia
英文摘要

Flow prediction in ungauged catchments is a major unresolved challenge in scientific and engineering hydrology. This study attacks the prediction in ungauged catchment problem by exploiting advances in flow index selection and regionalization in Bayesian inference and by developing new statistical tests of model performance in ungauged catchments. First, an extensive set of available flow indices is reduced using principal component (PC) analysis to a compact orthogonal set of flow index PCs. These flow index PCs are regionalized under minimal assumptions using random forests regression augmented with a residual error model and used to condition hydrological model parameters using a Bayesian scheme. Second, adequacy tests are proposed to evaluate a priori the hydrological and regionalization model performance in the space of flow index PCs. The proposed regionalization approach is applied to 92 northern Spain catchments, with 16 catchments treated as ungauged. It is shown that (1) a small number of PCs capture approximately 87% of variability in the flow indices and (2) adequacy tests with respect to regionalized information are indicative of (but do not guarantee) the ability of a hydrological model to predict flow time series and are hence proposed as a prerequisite for flow prediction in ungauged catchments. The adequacy tests identify the regionalization of flow index PCs as adequate in 12 of 16 catchments but the hydrological model as adequate in only 1 of 16 catchments. Hence, a focus on improving hydrological model structure and input data (the effects of which are not disaggregated in this work) is recommended.


英文关键词regionalization ungauged catchments uncertainty random forests regression model adequacy test Bayesian inference
领域资源环境
收录类别SCI-E
WOS记录号WOS:000474848500042
WOS关键词KOLMOGOROV-SMIRNOV TEST ; RAINFALL-RUNOFF MODELS ; PRINCIPAL-COMPONENTS ; PARAMETER-ESTIMATION ; EMPIRICAL-ANALYSIS ; DURATION CURVES ; STOPPING RULES ; UNCERTAINTY ; STREAMFLOW ; CALIBRATION
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/183150
专题资源环境科学
作者单位1.Univ Cantabria, Environm Hydraul Inst IHCantabria, Santander, Spain;
2.Imperial Coll London, Dept Civil & Environm Engn, London, England;
3.Univ Bristol, Dept Civil Engn, Bristol, Avon, England;
4.Swiss Re, Armonk, NY USA;
5.Univ Adelaide, Sch Civil Environm & Min Engn, Adelaide, SA, Australia
推荐引用方式
GB/T 7714
Prieto, Cristina,Le Vine, Nataliya,Kavetski, Dmitri,et al. Flow Prediction in Ungauged Catchments Using Probabilistic Random Forests Regionalization and New Statistical Adequacy Tests[J]. WATER RESOURCES RESEARCH,2019,55(5):4364-4392.
APA Prieto, Cristina,Le Vine, Nataliya,Kavetski, Dmitri,Garcia, Eduardo,&Medina, Raul.(2019).Flow Prediction in Ungauged Catchments Using Probabilistic Random Forests Regionalization and New Statistical Adequacy Tests.WATER RESOURCES RESEARCH,55(5),4364-4392.
MLA Prieto, Cristina,et al."Flow Prediction in Ungauged Catchments Using Probabilistic Random Forests Regionalization and New Statistical Adequacy Tests".WATER RESOURCES RESEARCH 55.5(2019):4364-4392.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Prieto, Cristina]的文章
[Le Vine, Nataliya]的文章
[Kavetski, Dmitri]的文章
百度学术
百度学术中相似的文章
[Prieto, Cristina]的文章
[Le Vine, Nataliya]的文章
[Kavetski, Dmitri]的文章
必应学术
必应学术中相似的文章
[Prieto, Cristina]的文章
[Le Vine, Nataliya]的文章
[Kavetski, Dmitri]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。