GSTDTAP  > 气候变化
DOI10.1007/s00382-018-4356-3
Confidence intervals in optimal fingerprinting
DelSole, Timothy1; Trenary, Laurie1; Yan, Xiaoqin2; Tippett, Michael K.3,4
2019-04-01
发表期刊CLIMATE DYNAMICS
ISSN0930-7575
EISSN1432-0894
出版年2019
卷号52页码:4111-4126
文章类型Article
语种英语
国家USA; Saudi Arabia
英文摘要

Optimal fingerprinting is a standard method for detecting climate changes. Among the uncertainties taken into account by this method, one is the fact that the response to climate forcing is not known exactly, but in practice is estimated from ensemble averages of model simulations. This uncertainty can be taken into account using an Error-in-Variables model (or equivalently, the Total Least Squares method), and can be expressed through confidence intervals. Unfortunately, the predominant paradigm (likelihood ratio theory) for deriving confidence intervals is not guaranteed to work because the number of parameters that are estimated in the Error-in-Variables model grows with the number of observations. This paper discusses various methods for deriving confidence intervals and shows that the widely-used intervals proposed in the seminal paper by Allen and Stott are effectively equivalent to bias-corrected intervals from likelihood ratio theory. A new, computationally simpler, method for computing these intervals is derived. Nevertheless, these confidence intervals are incorrect in the weak-signal regime. This conclusion does not necessarily invalidate previous detection and attribution studies because many such studies lie in the strong-signal regime, for which standard methods give correct confidence intervals. A new diagnostic is introduced to check whether or not a data set lies in the weak-signal regime. Finally, and most importantly, a bootstrap method is shown to give correct confidence intervals in both strong- and weak-signal regimes, and always produces finite confidence intervals, in contrast to the likelihood ratio method which can give unbounded intervals that do not match the actual uncertainty.


英文关键词Optimal fingerprinting Detection and attribution Total least squares
领域气候变化
收录类别SCI-E
WOS记录号WOS:000467187600018
WOS关键词ERRORS-IN-VARIABLES ; LIKELIHOOD-ESTIMATION ; REGRESSION-MODEL
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/181888
专题气候变化
作者单位1.George Mason Univ, Dept Atmospher Ocean & Earth Sci, Fairfax, VA 22030 USA;
2.Princeton Univ, Program Atmospher, Ocean Sci, Princeton, NJ 08544 USA;
3.Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA;
4.King Abdulaziz Univ, Ctr Excellence Climate Change Res, Dept Meteorol, Jeddah, Saudi Arabia
推荐引用方式
GB/T 7714
DelSole, Timothy,Trenary, Laurie,Yan, Xiaoqin,et al. Confidence intervals in optimal fingerprinting[J]. CLIMATE DYNAMICS,2019,52:4111-4126.
APA DelSole, Timothy,Trenary, Laurie,Yan, Xiaoqin,&Tippett, Michael K..(2019).Confidence intervals in optimal fingerprinting.CLIMATE DYNAMICS,52,4111-4126.
MLA DelSole, Timothy,et al."Confidence intervals in optimal fingerprinting".CLIMATE DYNAMICS 52(2019):4111-4126.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[DelSole, Timothy]的文章
[Trenary, Laurie]的文章
[Yan, Xiaoqin]的文章
百度学术
百度学术中相似的文章
[DelSole, Timothy]的文章
[Trenary, Laurie]的文章
[Yan, Xiaoqin]的文章
必应学术
必应学术中相似的文章
[DelSole, Timothy]的文章
[Trenary, Laurie]的文章
[Yan, Xiaoqin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。