GSTDTAP  > 气候变化
DOI10.1111/gcb.14411
Multimodel ensembles improve predictions of crop-environment-management interactions
Wallach, Daniel1; 39;Leary, Garry J.2
2018-11-01
发表期刊GLOBAL CHANGE BIOLOGY
ISSN1354-1013
EISSN1365-2486
出版年2018
卷号24期号:11页码:5072-5083
文章类型Article
语种英语
国家France; Peoples R China; USA; Germany; Australia; Netherlands; India; Pakistan; Scotland; England; Colombia; Italy; Belgium; Spain; Finland
英文摘要

A recent innovation in assessment of climate change impact on agricultural production has been to use crop multimodel ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e-mean) and median (e-median) often seem to predict quite well. However, few studies have specifically been concerned with the predictive quality of those ensemble predictors. We ask what is the predictive quality of e-mean and e-median, and how does that depend on the ensemble characteristics. Our empirical results are based on five MME studies applied to wheat, using different data sets but the same 25 crop models. We show that the ensemble predictors have quite high skill and are better than most and sometimes all individual models for most groups of environments and most response variables. Mean squared error of e-mean decreases monotonically with the size of the ensemble if models are added at random, but has a minimum at usually 2-6 models if best-fit models are added first. Our theoretical results describe the ensemble using four parameters: average bias, model effect variance, environment effect variance, and interaction variance. We show analytically that mean squared error of prediction (MSEP) of e-mean will always be smaller than MSEP averaged over models and will be less than MSEP of the best model if squared bias is less than the interaction variance. If models are added to the ensemble at random, MSEP of e-mean will decrease as the inverse of ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value is not necessarily small, and so it is important to evaluate the predictive quality of e-mean for each target population of environments. These results provide new information on the advantages of ensemble predictors, but also show their limitations.


英文关键词climate change impact crop models ensemble mean ensemble median multimodel ensemble prediction
领域气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000447760300007
WOS关键词MODELS ; YIELD ; UNCERTAINTY ; SKILL
WOS类目Biodiversity Conservation ; Ecology ; Environmental Sciences
WOS研究方向Biodiversity & Conservation ; Environmental Sciences & Ecology
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/17549
专题气候变化
资源环境科学
作者单位1.INRA, UMR AGIR, F-31326 Castanet Tolosan, France;
2.Montpellier SupAgro, INRA, UMR LEPSE, Montpellier, France;
3.Nanjing Agr Univ, Jiangsu Collaborat Innovat Ctr Modern Crop Prod, Key Lab Crop Syst Anal & Decis Making,Minist Agr, Natl Engn & Technol Ctr Informat Agr,Jiangsu Key, Nanjing, Jiangsu, Peoples R China;
4.Univ Florida, Agr & Biol Engn Dept, Gainesville, FL USA;
5.Univ Bonn, Inst Crop Sci & Resource Conservat, INRES, Bonn, Germany;
6.Leibniz Ctr Agr Landscape Res, Muncheberg, Germany;
7.CSIRO Agr & Food Brisbane, St Lucia, Qld, Australia;
8.Wageningen Univ, Plant Prod Syst Grp, Wageningen, Netherlands;
9.BISA CIMMYT, CGIAR Res Program Climate Change Agr & Food Secur, New Delhi, India;
10.Washington State Univ, Biol Syst Engn, Pullman, WA 99164 USA;
11.Pir Mehr Ali Shah Arid Agr Univ, Dept Agron, Rawalpindi, Pakistan;
12.Michigan State Univ, Dept Earth & Environm Sci, E Lansing, MI 48824 USA;
13.Michigan State Univ, WK Kellogg Biol Stn, E Lansing, MI 48824 USA;
14.German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Biochem Plant Pathol, Neuherberg, Germany;
15.James Hutton Inst Invergowrie, Dundee, Scotland;
16.Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds, W Yorkshire, England;
17.Int Ctr Trop Agr CIAT, ESSP Program Climate Change Agr & Food Se, CGIAR, Cali, Colombia;
18.European Food Safety Author, GMO Unit, Parma, Italy;
19.Univ Liege, Gembloux Agrobio Tech, Dept Terra & AgroBioChem, Liege, Belgium;
20.Ctr Dev Res ZEF, Bonn, Germany;
21.CSIC, IAS, Cordoba, Spain;
22.Univ Cordoba, Cordoba, Spain;
23.Dept Econ Dev, Jobs Transport & Resources, Agr Victoria Res, Ballarat, Vic, Australia;
24.Univ Melbourne, Fac Vet & Agr Sci, Creswick, Vic, Australia;
25.Univ Hohenheim, Inst Soil Sci & Land Evaluat, Stuttgart, Germany;
26.Univ Clermont Auvergne, INRA, UMR GDEC, Clermont Ferrand, France;
27.Univ Florida, Inst Sustainable Food Syst, Gainesville, FL USA;
28.Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA;
29.Texas A&M Univ, Texas A&M Agrilife Res & Extens Ctr, Temple, TX USA;
30.Leibniz Ctr Agr Landscape Res, Inst Landscape Syst Anal, Muncheberg, Germany;
31.Potsdam Inst Climate Impact Res, Potsdam, Germany;
32.IARI, PUSA, Ctr Environm Sci & Climate Resilient Agr, New Delhi, India;
33.Grains Innovat Pk, Dept Econ Dev, Agr Victoria Res, Jobs Transport & Resources, Horsham, Vic, Australia;
34.Nat Resources Inst Finland Luke, Helsinki, Finland;
35.INRA, US Agroclim, Avignon, France;
36.Univ Gottingen, Trop Plant Prod & Agr Syst Modelling TROPAGS, Gottingen, Germany;
37.Univ Gottingen, Ctr Biodivers & Sustainable Land Use CBL, Gottingen, Germany;
38.Rothamsted Res, Computat & Syst Biol Dept, Harpenden, Herts, England;
39.Wageningen Univ, Water & Food & Water Syst & Global Change Grp, Wageningen, Netherlands;
40.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China;
41.Wageningen Univ, Plant Prod Syst, Wageningen, Netherlands;
42.Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China;
43.EFSA, Parma, Italy
推荐引用方式
GB/T 7714
Wallach, Daniel,39;Leary, Garry J.. Multimodel ensembles improve predictions of crop-environment-management interactions[J]. GLOBAL CHANGE BIOLOGY,2018,24(11):5072-5083.
APA Wallach, Daniel,&39;Leary, Garry J..(2018).Multimodel ensembles improve predictions of crop-environment-management interactions.GLOBAL CHANGE BIOLOGY,24(11),5072-5083.
MLA Wallach, Daniel,et al."Multimodel ensembles improve predictions of crop-environment-management interactions".GLOBAL CHANGE BIOLOGY 24.11(2018):5072-5083.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wallach, Daniel]的文章
[39;Leary, Garry J.]的文章
百度学术
百度学术中相似的文章
[Wallach, Daniel]的文章
[39;Leary, Garry J.]的文章
必应学术
必应学术中相似的文章
[Wallach, Daniel]的文章
[39;Leary, Garry J.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。