Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1111/gcb.14411 |
Multimodel ensembles improve predictions of crop-environment-management interactions | |
Wallach, Daniel1; 39;Leary, Garry J.2 | |
2018-11-01 | |
发表期刊 | GLOBAL CHANGE BIOLOGY
![]() |
ISSN | 1354-1013 |
EISSN | 1365-2486 |
出版年 | 2018 |
卷号 | 24期号:11页码:5072-5083 |
文章类型 | Article |
语种 | 英语 |
国家 | France; Peoples R China; USA; Germany; Australia; Netherlands; India; Pakistan; Scotland; England; Colombia; Italy; Belgium; Spain; Finland |
英文摘要 | A recent innovation in assessment of climate change impact on agricultural production has been to use crop multimodel ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e-mean) and median (e-median) often seem to predict quite well. However, few studies have specifically been concerned with the predictive quality of those ensemble predictors. We ask what is the predictive quality of e-mean and e-median, and how does that depend on the ensemble characteristics. Our empirical results are based on five MME studies applied to wheat, using different data sets but the same 25 crop models. We show that the ensemble predictors have quite high skill and are better than most and sometimes all individual models for most groups of environments and most response variables. Mean squared error of e-mean decreases monotonically with the size of the ensemble if models are added at random, but has a minimum at usually 2-6 models if best-fit models are added first. Our theoretical results describe the ensemble using four parameters: average bias, model effect variance, environment effect variance, and interaction variance. We show analytically that mean squared error of prediction (MSEP) of e-mean will always be smaller than MSEP averaged over models and will be less than MSEP of the best model if squared bias is less than the interaction variance. If models are added to the ensemble at random, MSEP of e-mean will decrease as the inverse of ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value is not necessarily small, and so it is important to evaluate the predictive quality of e-mean for each target population of environments. These results provide new information on the advantages of ensemble predictors, but also show their limitations. |
英文关键词 | climate change impact crop models ensemble mean ensemble median multimodel ensemble prediction |
领域 | 气候变化 ; 资源环境 |
收录类别 | SCI-E |
WOS记录号 | WOS:000447760300007 |
WOS关键词 | MODELS ; YIELD ; UNCERTAINTY ; SKILL |
WOS类目 | Biodiversity Conservation ; Ecology ; Environmental Sciences |
WOS研究方向 | Biodiversity & Conservation ; Environmental Sciences & Ecology |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/17549 |
专题 | 气候变化 资源环境科学 |
作者单位 | 1.INRA, UMR AGIR, F-31326 Castanet Tolosan, France; 2.Montpellier SupAgro, INRA, UMR LEPSE, Montpellier, France; 3.Nanjing Agr Univ, Jiangsu Collaborat Innovat Ctr Modern Crop Prod, Key Lab Crop Syst Anal & Decis Making,Minist Agr, Natl Engn & Technol Ctr Informat Agr,Jiangsu Key, Nanjing, Jiangsu, Peoples R China; 4.Univ Florida, Agr & Biol Engn Dept, Gainesville, FL USA; 5.Univ Bonn, Inst Crop Sci & Resource Conservat, INRES, Bonn, Germany; 6.Leibniz Ctr Agr Landscape Res, Muncheberg, Germany; 7.CSIRO Agr & Food Brisbane, St Lucia, Qld, Australia; 8.Wageningen Univ, Plant Prod Syst Grp, Wageningen, Netherlands; 9.BISA CIMMYT, CGIAR Res Program Climate Change Agr & Food Secur, New Delhi, India; 10.Washington State Univ, Biol Syst Engn, Pullman, WA 99164 USA; 11.Pir Mehr Ali Shah Arid Agr Univ, Dept Agron, Rawalpindi, Pakistan; 12.Michigan State Univ, Dept Earth & Environm Sci, E Lansing, MI 48824 USA; 13.Michigan State Univ, WK Kellogg Biol Stn, E Lansing, MI 48824 USA; 14.German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Biochem Plant Pathol, Neuherberg, Germany; 15.James Hutton Inst Invergowrie, Dundee, Scotland; 16.Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds, W Yorkshire, England; 17.Int Ctr Trop Agr CIAT, ESSP Program Climate Change Agr & Food Se, CGIAR, Cali, Colombia; 18.European Food Safety Author, GMO Unit, Parma, Italy; 19.Univ Liege, Gembloux Agrobio Tech, Dept Terra & AgroBioChem, Liege, Belgium; 20.Ctr Dev Res ZEF, Bonn, Germany; 21.CSIC, IAS, Cordoba, Spain; 22.Univ Cordoba, Cordoba, Spain; 23.Dept Econ Dev, Jobs Transport & Resources, Agr Victoria Res, Ballarat, Vic, Australia; 24.Univ Melbourne, Fac Vet & Agr Sci, Creswick, Vic, Australia; 25.Univ Hohenheim, Inst Soil Sci & Land Evaluat, Stuttgart, Germany; 26.Univ Clermont Auvergne, INRA, UMR GDEC, Clermont Ferrand, France; 27.Univ Florida, Inst Sustainable Food Syst, Gainesville, FL USA; 28.Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA; 29.Texas A&M Univ, Texas A&M Agrilife Res & Extens Ctr, Temple, TX USA; 30.Leibniz Ctr Agr Landscape Res, Inst Landscape Syst Anal, Muncheberg, Germany; 31.Potsdam Inst Climate Impact Res, Potsdam, Germany; 32.IARI, PUSA, Ctr Environm Sci & Climate Resilient Agr, New Delhi, India; 33.Grains Innovat Pk, Dept Econ Dev, Agr Victoria Res, Jobs Transport & Resources, Horsham, Vic, Australia; 34.Nat Resources Inst Finland Luke, Helsinki, Finland; 35.INRA, US Agroclim, Avignon, France; 36.Univ Gottingen, Trop Plant Prod & Agr Syst Modelling TROPAGS, Gottingen, Germany; 37.Univ Gottingen, Ctr Biodivers & Sustainable Land Use CBL, Gottingen, Germany; 38.Rothamsted Res, Computat & Syst Biol Dept, Harpenden, Herts, England; 39.Wageningen Univ, Water & Food & Water Syst & Global Change Grp, Wageningen, Netherlands; 40.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China; 41.Wageningen Univ, Plant Prod Syst, Wageningen, Netherlands; 42.Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China; 43.EFSA, Parma, Italy |
推荐引用方式 GB/T 7714 | Wallach, Daniel,39;Leary, Garry J.. Multimodel ensembles improve predictions of crop-environment-management interactions[J]. GLOBAL CHANGE BIOLOGY,2018,24(11):5072-5083. |
APA | Wallach, Daniel,&39;Leary, Garry J..(2018).Multimodel ensembles improve predictions of crop-environment-management interactions.GLOBAL CHANGE BIOLOGY,24(11),5072-5083. |
MLA | Wallach, Daniel,et al."Multimodel ensembles improve predictions of crop-environment-management interactions".GLOBAL CHANGE BIOLOGY 24.11(2018):5072-5083. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论