GSTDTAP  > 气候变化
DOI10.1111/gcb.13755
Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming
Feng, Wenting1,2; Liang, Junyi2,3,4; Hale, Lauren E.2,5; Jung, Chang Gyo2; Chen, Ji6; Zhou, Jizhong2,5; Xu, Minggang; Yuan, Mengting1,2,5; Wu, Liyou2,5; Bracho, Rosvel7; Pegoraro, Elaine8; Schuur, Edward A. G.8; Luo, Yiqi2
2017-11-01
发表期刊GLOBAL CHANGE BIOLOGY
ISSN1354-1013
EISSN1365-2486
出版年2017
卷号23期号:11
文章类型Article
语种英语
国家Peoples R China; USA
英文摘要

Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon-climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long-term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming. Taking advantage of a 12-year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C-degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long-term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change.


英文关键词diversity Geochip incubation inverse modeling long-term warming metagenomics microbial community soil organic carbon turnover
领域气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000412322700027
WOS关键词FUNCTIONAL GENE DIVERSITY ; TEMPERATURE SENSITIVITY ; AUTOTROPHIC RESPIRATION ; USE EFFICIENCY ; RESPONSES ; MATTER ; STOICHIOMETRY ; CLIMATE ; COMMUNITIES ; UNCERTAINTY
WOS类目Biodiversity Conservation ; Ecology ; Environmental Sciences
WOS研究方向Biodiversity & Conservation ; Environmental Sciences & Ecology
引用统计
被引频次:74[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/17144
专题气候变化
资源环境科学
作者单位1.Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Natl Engn Lab Improving Qual Arable Land, Beijing, Peoples R China;
2.Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA;
3.Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA;
4.Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA;
5.Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA;
6.Northwestern Polytech Univ, Ctr Ecol & Environm Sci, Xian, Shaanxi, Peoples R China;
7.Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA;
8.No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ USA
推荐引用方式
GB/T 7714
Feng, Wenting,Liang, Junyi,Hale, Lauren E.,et al. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming[J]. GLOBAL CHANGE BIOLOGY,2017,23(11).
APA Feng, Wenting.,Liang, Junyi.,Hale, Lauren E..,Jung, Chang Gyo.,Chen, Ji.,...&Luo, Yiqi.(2017).Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming.GLOBAL CHANGE BIOLOGY,23(11).
MLA Feng, Wenting,et al."Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming".GLOBAL CHANGE BIOLOGY 23.11(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Feng, Wenting]的文章
[Liang, Junyi]的文章
[Hale, Lauren E.]的文章
百度学术
百度学术中相似的文章
[Feng, Wenting]的文章
[Liang, Junyi]的文章
[Hale, Lauren E.]的文章
必应学术
必应学术中相似的文章
[Feng, Wenting]的文章
[Liang, Junyi]的文章
[Hale, Lauren E.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。