GSTDTAP  > 气候变化
DOI10.1111/gcb.13489
The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale
Hursh, Andrew; Ballantyne, Ashley; Cooper, Leila; Maneta, Marco; Kimball, John; Watts, Jennifer
2017-05-01
发表期刊GLOBAL CHANGE BIOLOGY
ISSN1354-1013
EISSN1365-2486
出版年2017
卷号23期号:5
文章类型Article
语种英语
国家USA
英文摘要

Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr(-1), but also highlight regions of uncertainty where more observations are required or environmental controls are hard to constrain.


英文关键词climate change global carbon cycle primary productivity soil moisture soil respiration soil temperature
领域气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000397800600027
WOS关键词CLIMATE-CHANGE ; HETEROTROPHIC RESPIRATION ; INTERANNUAL VARIABILITY ; ECOSYSTEM RESPIRATION ; ARCTIC SOIL ; MODEL ; RESPONSES ; FOREST ; CO2 ; DECOMPOSITION
WOS类目Biodiversity Conservation ; Ecology ; Environmental Sciences
WOS研究方向Biodiversity & Conservation ; Environmental Sciences & Ecology
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/16508
专题气候变化
资源环境科学
作者单位Univ Montana, Coll Forestry & Conservat, Dept Ecosyst & Conservat Sci, 32 Campus Dr, Missoula, MT 59812 USA
推荐引用方式
GB/T 7714
Hursh, Andrew,Ballantyne, Ashley,Cooper, Leila,et al. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale[J]. GLOBAL CHANGE BIOLOGY,2017,23(5).
APA Hursh, Andrew,Ballantyne, Ashley,Cooper, Leila,Maneta, Marco,Kimball, John,&Watts, Jennifer.(2017).The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale.GLOBAL CHANGE BIOLOGY,23(5).
MLA Hursh, Andrew,et al."The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale".GLOBAL CHANGE BIOLOGY 23.5(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hursh, Andrew]的文章
[Ballantyne, Ashley]的文章
[Cooper, Leila]的文章
百度学术
百度学术中相似的文章
[Hursh, Andrew]的文章
[Ballantyne, Ashley]的文章
[Cooper, Leila]的文章
必应学术
必应学术中相似的文章
[Hursh, Andrew]的文章
[Ballantyne, Ashley]的文章
[Cooper, Leila]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。