GSTDTAP  > 地球科学
Multidrug resistance: Not as recent as we thought
admin
2019-09-13
发布年2019
语种英语
国家美国
领域地球科学
正文(英文)

Osaka, Japan - Researchers from Osaka University have made the striking discovery that multidrug-resistant bacteria may have been around longer than we thought.

In findings published this month in Communications Biology, the researchers investigated the evolutionary relationships among hundreds of RND-type efflux pumps--specialized proteins that pump multiple different types of antibiotics out of a bacterial cell, making it multidrug resistant.

"Interestingly, we found that RND efflux pump AcrB from H. influenzae was relatively ancient but exported the same antibiotics as its more evolved counterpart from Escherichia coli," explains lead author of the study Martijn Zwama. "What it couldn't do well was export bile salts, which are not something that H. influenzae encounters in its normal habitat but are common components of the gut, where E. coli resides."

While this pointed to evolution of the pumps in their natural environments, it also suggested that multidrug recognition is an ancient trait. This is an important distinction because most bacteria acquire resistance genes or mutations in the face of selective pressure from the environment.

But while AcrB protects H. influenzae from several difference classes of antibiotics, the pathogen remains susceptible to β-lactams and novobiocin, something that researchers have previously not been able to explain.

"Bacterial membranes contain channels that selectively let different substrates into the cell," says co-author Akihito Yamaguchi. "We found that in H. influenzae, one of these channels, OmpP2, was slightly leaky. This meant that some of the smaller drugs pumped out of the cell by AcrB could seep back inside, where they went to work killing the bacterium."

Multidrug-resistant bacteria have devastating--and often lethal--effects in infected patients. And with new strains constantly emerging, these super pathogens are arguably the biggest threat to human health today. Therefore, drugs targeting efflux pumps have been developed. However, the researchers found that these drugs had no effect on H. influenzae.

"Efflux pump inhibitors bind to a phenylalanine-rich pocket in AcrB. Unfortunately, these drugs were designed to target the more evolved proteins in species like E. coli," explains study corresponding author Professor Kunihiko Nishino. "Because H. influenzae AcrB is more ancient, we found that it does not contain the same pocket configuration and is therefore unaffected by the efflux pump inhibitors."

Uncovering these evolutionary differences has shown that a "one size fits all" approach is not suitable to address RND-type efflux pumps. This research provides a more accurate picture of the evolution and mechanism of multidrug efflux systems, which will assist the development of new antibiotics to more effectively target specific multidrug-resistant pathogens.

###

The article, "Phylogenetic and functional characterisation of the Haemophilus influenzae multidrug efflux pump AcrB," was published in Communications Biology at DOI: https://doi.org/10.1038/s42003-019-0564-6.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert! - Earth Science
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/135975
专题地球科学
推荐引用方式
GB/T 7714
admin. Multidrug resistance: Not as recent as we thought. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。