GSTDTAP  > 地球科学
Radiation sensitive
admin
2019-07-01
发布年2019
语种英语
国家欧洲
领域地球科学
正文(英文)1 July 2019

There is little known about the effects of space radiation on the human body. Astronauts cannot see or feel it, yet the high doses they are exposed to outside Earth’s cocoon pose health hazards for trips to the Moon and Mars. To help investigate and find out more, European scientists can now accelerate atoms at close to the speed of light to learn how to protect astronauts.

Space radiation passes through matter and penetrates the human body. Energetic particles impact living tissues, impairing normal function of cells and even killing them. An astronaut on a mission to Mars could receive radiation doses up to 700 times higher than on our planet.

This type of radiation is a major concern for space agencies –  the constant shelling of cosmic rays could damage crews and jeopardise a mission.

Space risks – Radiation

“The radiation risk is characterised by high uncertainty and lack of countermeasures. We need to know more,” says Jennifer Ngo-Anh, ESA’s team leader for human research, biology and physical sciences.

Radiation damage to the human body extends to the brain, heart and the central nervous system.

ESA is opening the doors to research into the biological effects of space radiation. Experiments should investigate radiation doses that astronauts could cope with while staying safe from cancer or other degenerative diseases during and after a mission.

Scientists are encouraged to investigate radiation risks and how to stop them with the right countermeasures.

Accelerating knowledge

ESA is offering access to a high-energy accelerator to recreate cosmic radiation by ‘shooting’ atomic particles to speeds approaching the speed of light.

Experiments will take place at the GSI accelerator facility in Darmstadt, Germany, also known for the discovery of six chemical elements and the development of a new type of tumor therapy using ion beams.  

Heavy but fast

This facility has seen 36 experiments bombarding cells and materials with radiation to address the effects of space radiation. The accelerator will host a workshop in September for researchers interested in its potential.

The results from these studies are not solely space bound. “This research could contribute to better assess ionising radiation risks on Earth and improve charged particle therapy for oncology patients,” says Jennifer.

URL查看原文
来源平台European Space Agency
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/134320
专题地球科学
推荐引用方式
GB/T 7714
admin. Radiation sensitive. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。