GSTDTAP  > 气候变化
UBC scientists find high mutation rates within huge, old-growth trees
admin
2019-07-08
发布年2019
语种英语
国家美国
领域气候变化
正文(英文)
IMAGE

IMAGE: Researchers sampled trees growing in Vancouver Island's Carmanah Valley. view more 

Credit: TJ Watt

The towering, hundred-year-old Sitka spruce trees growing in the heart of Vancouver Island's Carmanah Valley appear placid and unchanging.

In reality, each one is packed to the rafters with evolutionary potential.

UBC researchers scraped bark and collected needles from 20 of these trees last summer, sending the samples to a lab for DNA sequencing. Results, published recently in Evolution Letters, showed that a single old-growth tree could have up to 100,000 genetic differences in DNA sequence between the base of the tree, where the bark was collected, and the tip of the crown.

Each difference represents a somatic mutation, or a mutation that occurs during the natural course of growth rather than during reproduction.

"This is the first evidence of the tremendous genetic variation that can accumulate in some of our tallest trees. Scientists have known for decades about somatic mutations, but very little about how frequently they occur and whether they contribute significantly to genetic variation," said Sally Aitken, the study's lead researcher and a professor of forestry at UBC. "Now, thanks to advances in genomic sequencing, we know some of the answers."

The researchers chose the Sitka spruce because it's among the tallest trees growing in the Pacific Northwest, and sampled the exceptional trees in Carmanah Walbran Provincial Park.

"Because these trees live so long and grow so tall, they're capable of accumulating tremendous genetic variation over time," explained Vincent Hanlon, who did the research as part of his master of science in the faculty of forestry at UBC.

"On average, the trees we sampled for the study were 220 to 500 years old and 76 metres tall. There's a redwood tree in California that's 116 metres tall, but these Sitka spruce were pretty big."

The researchers say more time and further studies will be needed to understand exactly how the different somatic mutations will affect the evolution of the tree as a species.

"Most of the mutations are probably harmless, and some will likely be bad," explained Aitken. "But other mutations may result in genetic diversity and if they're passed onto offspring they'll contribute to evolution and adaptation over time."

Studying somatic mutation rates in various tree species can shed light on how trees, which can't evolve as rapidly as other organisms like animals due to their long lifespans, nonetheless survive and thrive, Aitken said.

"We often see tree populations that adapt well to local climates and develop effective responses to changing stresses such as pests and bugs," she added. "Our study provides insights on one genetic mechanism that might help make this possible."

###

Multimedia assets:

Study link: https://onlinelibrary.wiley.com/doi/full/10.1002/evl3.121

Photos: https://www.dropbox.com/sh/2tmrii7wg3n8v15/AAATAE4wRGeATkf194icKQZPa?dl=0

Researcher blog: http://blogs.ubc.ca/aitkenlab/2016/08/04/climbing-in-carmanah-part-ii-of-an-msc/

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert!
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/134157
专题气候变化
推荐引用方式
GB/T 7714
admin. UBC scientists find high mutation rates within huge, old-growth trees. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。