GSTDTAP  > 地球科学
Accounting for ice-earth feedbacks at finer scale suggests slower glacier retreat
admin
2019-04-25
发布年2019
语种英语
国家美国
领域地球科学
正文(英文)

Accounting for the way the Antarctic ice sheet interacts with the solid earth below - an important but previously poorly captured phenomena - reveals that ice sheet collapse events may be delayed for several decades, at this major ice structure. Specifically, this interaction at the so-called "grounding line" may slow the otherwise fast-moving retreat of the Thwaites Glacier, the largest glacier in this region. "For those concerned about potentially catastrophic sea level rise, the results ... can be taken as welcome news," says Eric J. Steig, in a related Perspective. "But it is important to recognize that [the authors] do not make a specific prediction about the magnitude of the West Antarctic contribution to sea level." The question of how quickly the Antarctic ice sheet will lose mass over the next few centuries - contributing to global sea level rise as it does - continues to motivate glaciological research in Antarctica. Recent work on the West Antarctica Ice Sheet (WAIS) has shown that an unexpectedly rapid rebound of areas of this sheet may help stabilize the WAIS against catastrophic collapse. This is based on the way in which, as glaciers retreat, the Earth's crust springs up, creating changes in the sea bed geometry in relation to the point where the glacier goes afloat to become an ice shelf (the grounding line). This process can prevent the steady retreat of the glacier, allowing it to ground. To date, numerical model simulations of this process have been used to assess it at relatively large spatial scales. Here, Eric Larour and colleagues focus on the feedbacks between glacier retreat and solid earth processes at finer resolution, using the Thwaites and Pine Island Glacier grounding lines as case studies. In a sensitivity experiment using model simulations, they find that by the year 2350, the grounding line retreat from the Thwaites Glacier is reduced by about 40%, compared to a scenario where fine-scale feedbacks aren't included. Too, the Thwaites Glacier's contribution to sea level rise is reduced by more than 25%. "...their results should be seen as a guide to the magnitude (and sign) of uncertainty in existing predictions, and as a roadmap for future research," says Steig.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert! - Earth Science
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/128431
专题地球科学
推荐引用方式
GB/T 7714
admin. Accounting for ice-earth feedbacks at finer scale suggests slower glacier retreat. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。