GSTDTAP  > 地球科学
How mitochondria deploy a powerful punch against life-threatening bacteria
admin
2018-11-12
发布年2018
语种英语
国家美国
领域地球科学
正文(英文)
Mitochondria. Credit: Wikipedia commons

The constant battle for dominance between disease-causing bacteria and our immune systems has led to the evolution of some crafty warfare tactics on both sides.

One particularly nasty : methicillin-resistant Staphylococcus aureus, or MRSA.

Common in schools and health-care settings, MRSA has been known to cause occasionally life-threatening infections. This has recently led Michigan Medicine researchers to investigate how deliver their deadly payloads to destroy invading organisms such as MRSA.

Their work is published in the journal Cell Host & Microbe.

When alerted of an invasion, immune cells called macrophages surround and engulf bacteria, quarantining them inside a compartment called a phagosome. The cell then destroys them with weapons called (ROS).

"One example of a reactive oxygen species is bleach," says Mary O'Riordan, Ph.D., a professor of microbiology and immunology at the University of Michigan and the study's principal investigator. "Just like you don't want bleach on your skin, bacteria don't want reactive oxygen to damage their outside surface."

Immune cells usually deploy ROS inside their phagosomes using a well-known mechanism, which involves dumping oxidants into the compartment to kill the bacteria.

But many bacteria—including salmonella and MRSA—have found ways to avoid this form of attack.

Mitochondria: a power player

O'Riordan and her colleagues, research investigator Basel Abuaita, Ph.D., and Tracey Schultz, sought to discover what backup system employed to fight these bacteria.

In doing so, they found an unexpected player: mitochondria.

"We discovered that macrophages sense invading MRSA and turn on the machinery to increase mitochondrial development of ROS," Abuaita says.

ROS is a natural byproduct of mitochondria's normal job in cells, the production of energy.

And the team found that when placed under stress, such as invasion by a foreign agent, chemical signals from the endoplasmic reticulum—an organelle in the cell that acts as sort of a post office, packaging and sending substances around the cell—notifies mitochondria to ramp up production of ROS.

Still, a question remained: how do mitochondria deliver their ROS to the phagosome?

"ROS are also damaging to our own , so we hypothesized that there must be some delivery mechanism," O'Riordan says. "Mitochondria have not traditionally been known to package and deliver substances to different parts of the cell."

Targeted delivery methods

Their studies revealed that the ROS were delivered in tiny mitochondrial vesicles, recently discovered as a way that could talk to other parts of the cell.

To find these payloads, Abuaita used florescent tags and live high-resolution imaging techniques to watch the process unfold in real time.

He infected a cell with MRSA under a microscope and inserted a dye that would glow in the presence of ROS. Mitochondria in the infected cell began to glow, as did the macrophage when the bacteria touched its outside membrane.

Once the macrophage ate the MRSA, he witnessed a glowing hot spot as the ROS was delivered to the phagosome.

Why, though, would a cell have two different methods for deploying ROS?

"The immune system is full of redundancies," O'Riordan says. "It has to, by definition; every bacteria, virus, or parasite that we know is a pathogen is one because it has evolved ways to avoid the immune system.

"The immune system also has a real diversity of purpose and mechanism," she adds. "Being open to different ways of asking questions about the and understanding the biology of these pathogens helped us to find the right experimental system to use."

Explore further: Scientists show how tularemia bacteria trick cells to cause disease

More information: Basel H. Abuaita et al, Mitochondria-Derived Vesicles Deliver Antimicrobial Reactive Oxygen Species to Control Phagosome-Localized Staphylococcus aureus, Cell Host & Microbe (2018). DOI: 10.1016/j.chom.2018.10.005

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/128120
专题地球科学
推荐引用方式
GB/T 7714
admin. How mitochondria deploy a powerful punch against life-threatening bacteria. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。