GSTDTAP  > 地球科学
Researchers identify key players in mysterious process of protein quality control
admin
2018-11-28
发布年2018
语种英语
国家美国
领域地球科学
正文(英文)
Biology Professor Judith Frydman. Credit: L.A. Cicero

Proteins are the workhorses of our cells, carrying out essential tasks to keep our cells – and our bodies – functioning properly. But proteins can only do their jobs if they fold into the right shape.

When a protein misfolds, the cell can try to salvage the situation by re-folding the protein or destroying it, but how cells make that decision has been a mystery. In a recent study published in Nature, Judith Frydman and her team identified the key molecular players in this decision. She sees this as the first step toward treating many human diseases, including neurodegenerative disorders like Alzheimer's and Parkinson's diseases and cancers that sometimes result when a cell fails to eliminate misfolded proteins.

"We need to understand how cells make this decision at the before we can develop cures," she said. "But first we had to define the components and pathways."

To re-fold or not to re-fold?

The trick is finding the right balance between eliminating bad proteins and salvaging what's fixable.

"The cell needs to find a sweet spot where it degrades the misfolded proteins to keep them from accumulating and being toxic but isn't too zealous in degrading everything –including proteins that can still function," Frydman said.

After about a decade of work, Frydman and her team found how the cell determines where that sweet spot lies. The responsibility resides with two groups of proteins – called ubiquitin ligases and – that work together to decide what to do about misfolded proteins.

The ubiquitin ligases stick a variety of branched ubiquitin chains to specific locations on the misfolded proteins. Depending on the location and type of tags, the cell decides whether to destroy or re-fold.

Both groups of proteins are known to play other roles in the cell, but this is the first evidence that they have a dual role in targeting misfolded proteins. "Molecular chaperones, much like human chaperones, help newly made or otherwise immature proteins attain their mature, functional state," Frydman said. "I was surprised that chaperones also form part of the decision to degrade a misfolded protein."

Compartmentalizing the decision

While studying how cells determine which misfolded proteins to destroy, the team noticed something strange: the selection processes differed in the cytoplasm, the main compartment of the cell, and the nucleus, where the cell's DNA resides.

"We think this reflects the different requirements for how stringent protein quality control has to be," Frydman said. In the cytoplasm – where newly created proteins are in the process of folding – cells would try not to degrade proteins prematurely. Cells might lower the bar for destroying misfolded proteins in the nucleus, to avoid them interfering with important genetic information.

Frydman and her team are still curious about how cells decide what to do with misfolded proteins in different parts of the cell, but their new findings have laid the foundation to answer questions like these.

"This basic knowledge establishes a new principle that will allow us to think about this important question of quality control in healthy cells but also during disease, both fundamentally and from the point of view of therapeutics," she said.

Explore further: Helping to transport proteins inside the cell

More information: Rahul S. Samant et al. Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control, Nature (2018). DOI: 10.1038/s41586-018-0678-x

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/127670
专题地球科学
推荐引用方式
GB/T 7714
admin. Researchers identify key players in mysterious process of protein quality control. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。