GSTDTAP  > 地球科学
Tracing iron in the North Pacific
admin
2018-12-03
发布年2018
语种英语
国家美国
领域地球科学
正文(英文)
The iron cycle in the ocean. Credit: Yuntao Wang

The micronutrient iron (Fe) is recognized as a key factor in controlling oceanic primary productivity, and subsequently impacting the carbon cycle and marine ecosystem. The high-latitude area of the North Pacific is one of the three main high-nutrient and low-chlorophyll (HNLC) regions on Earth. Also, the growth of phytoplankton is limited by the availability of Fe. Climate change, human activities and ocean acidification are expected to influence the availability and transport of Fe in the ocean. Therefore, it is of great importance to study the Fe cycle and make reliable predictions for the future.

"As a result of human activity, the amount and composition of Fe induced by atmospheric decomposition has changed and affected the ocean. After depositing into the ocean, the distribution and transport of Fe is mainly determined by , e.g., mixing and upwelling. So, clarifying the sources and transport of biologically available Fe are key scientific questions for understanding the marine ecosystem," explains Dr. Fei Chai, a researcher at the Second Institute of Oceanography and corresponding author of a project report recently published in Atmospheric and Oceanic Science Letters.

"The biological availability of Fe in the ocean also depends on the amount and strength of organic complex ligands. The spatial distribution of Fe-binding ligands is highly variable, with more ligands found in the Northwest Pacific than Northeast Pacific. Also, the strength of ligands is mainly affected by the pH of water, with lower pH reducing the strength of ligands and decreasing the Fe uptake rate of diatoms. Therefore, under the influence of , the distribution and strength of Fe-binding ligands will change considerably, with subsequent impacts on the ecosystem of the North Pacific," adds Dr. Chai.

Dr. Fei Chai and his team, from the Second Institute of Oceanography, will develop and utilize a coupled physical-biological-Fe model, named ROMS-CoSiNE-Fe, in the North Pacific. The model will incorporate the Fe cycle for the upper North Pacific and make predictions of primary production and in the future. The project is funded by the National Natural Science Foundation of China from 2018 to 2022.

"These studies will explore the sources and transport of biologically available Fe in the HNLC region. The results can give scientific advice to stakeholders on the feasibility of conducting Fe fertilization," says Dr. Chai, "In the future, we hope to better understand the rate of Fe uptake by phytoplankton and make predictions of changes in the marine ecosystem of the North Pacific."

Explore further: Another human footprint: Rising anthropogenic nitrate levels in the North Pacific Ocean

More information: Yuntao Wang et al, The sources and transport of iron in the North Pacific and its impact on marine ecosystems, Atmospheric and Oceanic Science Letters (2018). DOI: 10.1080/16742834.2019.1545513

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/127213
专题地球科学
推荐引用方式
GB/T 7714
admin. Tracing iron in the North Pacific. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。