GSTDTAP  > 地球科学
Toward temperature-resilient EVs
admin
2018-11-02
发布年2018
语种英语
国家美国
领域地球科学
正文(英文)
Toward temperature-resilient EVs
Credit: otomobil, Shutterstock

The OSEM-EV project has come up with an entirely new concept of heat management for electric cars. These advances should enable a new generation of EVs with a greater and more predictable driving range.

Limited driving range is widely acknowledged as being the main obstacle to electric vehicle (EV) market growth. And whilst increased capacity could seem like the most natural way forward, it wouldn't solve the other, closely related problem EVs are currently facing: unpredictable range due to fluctuations in temperature.

When subjected to extremely cold or hot temperatures, batteries tend to lose up to half of their initial capacity. Achieving temperature resilience would considerably boost confidence in ELVs, and it therefore comes as no surprise that an 11-strong consortium has made its priority improved mileage and predictable range, without adding further cost and weight, since 2015.

"Our core objective under the OSEM-EV project was to make battery temperature resilient by using from the car, and cooling or heating it up thanks to a heat pump," says Reiner John, coordinator of the project on behalf of Infineon Technologies.

All in all, the project has developed a range of thermal management solutions including insulation, , innovative heating and cooling approaches, electronic control of electro-thermal and power flows, increased of electrified components and subsystems, energy substitution as well as energy harvesting functions. But its concept and the mobilization of waste heat from other subsystems is what truly makes OSEM-EV (Optimised and Systematic Energy Management in Electric Vehicles) stand out.

Thanks to the in-depth quantitative understanding of energy flows in they gathered over the duration of the project, the consortium was able to design and optimise the vehicle's energy architecture and to develop control algorithms for effective coupled electro-thermal energy management. These improve not only the energy efficiency of the powertrain, but also the reliability and lifetime of every subsystem in the car.

The technology was successfully demonstrated in two different classes of electric vehicles: one in the A-segment and one in the C-segment. These two segments were selected due to their very different requirements and topologies and, most importantly, for their high market potential.

Whilst commercialisation plans are still being discussed, John points out that Daimler will follow up on its own prototype and intends to include the novel components in future models. IFEVS, on the other hand, will follow up on their own demonstrator (a small truck devised for food delivery) and has made detailed plans available to all project partners.

One thing is certain: sooner or later, a of working under almost all weather conditions will be on our roads, boasting minimal use of energy to keep the passenger and battery compartment thermally conditioned, as well as a radical reduction in self-discharge and energy use.

Explore further: Liquid battery could lead to flexible energy storage

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/125509
专题地球科学
推荐引用方式
GB/T 7714
admin. Toward temperature-resilient EVs. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。